| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nzerooringczr.u |  | 
						
							| 2 |  | nzerooringczr.c |  | 
						
							| 3 |  | nzerooringczr.z |  | 
						
							| 4 |  | nzerooringczr.e |  | 
						
							| 5 |  | nzerooringczr.i |  | 
						
							| 6 |  | ax-1 |  | 
						
							| 7 |  | neq0 |  | 
						
							| 8 | 2 | ringccat |  | 
						
							| 9 | 1 8 | syl |  | 
						
							| 10 |  | iszeroi |  | 
						
							| 11 | 9 10 | sylan |  | 
						
							| 12 | 1 2 3 4 | zrtermoringc |  | 
						
							| 13 | 1 5 2 | irinitoringc |  | 
						
							| 14 | 9 | ad2antrr |  | 
						
							| 15 |  | simplr |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 14 15 16 | initoeu1w |  | 
						
							| 18 | 9 | ad2antrr |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 |  | simplr |  | 
						
							| 21 | 18 19 20 | termoeu1w |  | 
						
							| 22 |  | cictr |  | 
						
							| 23 | 9 22 | syl3an1 |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 3 | eldifad |  | 
						
							| 27 | 4 26 | elind |  | 
						
							| 28 | 2 25 1 | ringcbas |  | 
						
							| 29 | 27 28 | eleqtrrd |  | 
						
							| 30 |  | zringring |  | 
						
							| 31 | 30 | a1i |  | 
						
							| 32 | 5 31 | elind |  | 
						
							| 33 | 32 28 | eleqtrrd |  | 
						
							| 34 | 24 25 9 29 33 | cic |  | 
						
							| 35 |  | n0 |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 25 36 24 9 29 33 | isohom |  | 
						
							| 38 |  | ssn0 |  | 
						
							| 39 | 2 25 1 36 29 33 | ringchom |  | 
						
							| 40 | 39 | neeq1d |  | 
						
							| 41 |  | zringnzr |  | 
						
							| 42 |  | nrhmzr |  | 
						
							| 43 | 3 41 42 | sylancl |  | 
						
							| 44 |  | eqneqall |  | 
						
							| 45 | 43 44 | syl |  | 
						
							| 46 | 40 45 | sylbid |  | 
						
							| 47 | 38 46 | syl5com |  | 
						
							| 48 | 47 | expcom |  | 
						
							| 49 | 48 | com13 |  | 
						
							| 50 | 37 49 | mpd |  | 
						
							| 51 | 35 50 | biimtrrid |  | 
						
							| 52 | 34 51 | sylbid |  | 
						
							| 53 | 52 | 3ad2ant1 |  | 
						
							| 54 | 23 53 | mpd |  | 
						
							| 55 | 54 | 3exp |  | 
						
							| 56 | 55 | a1dd |  | 
						
							| 57 | 56 | ad2antrr |  | 
						
							| 58 | 21 57 | mpd |  | 
						
							| 59 | 58 | exp31 |  | 
						
							| 60 | 59 | com34 |  | 
						
							| 61 | 60 | com25 |  | 
						
							| 62 | 61 | ad2antrr |  | 
						
							| 63 | 17 62 | mpd |  | 
						
							| 64 | 63 | ex |  | 
						
							| 65 | 64 | com25 |  | 
						
							| 66 | 65 | expimpd |  | 
						
							| 67 | 66 | com23 |  | 
						
							| 68 | 67 | impd |  | 
						
							| 69 | 68 | com24 |  | 
						
							| 70 | 13 69 | mpd |  | 
						
							| 71 | 12 70 | mpd |  | 
						
							| 72 | 71 | adantr |  | 
						
							| 73 | 11 72 | mpd |  | 
						
							| 74 | 73 | expcom |  | 
						
							| 75 | 74 | exlimiv |  | 
						
							| 76 | 7 75 | sylbi |  | 
						
							| 77 | 6 76 | pm2.61i |  |