Step |
Hyp |
Ref |
Expression |
1 |
|
nzerooringczr.u |
|
2 |
|
nzerooringczr.c |
|
3 |
|
nzerooringczr.z |
|
4 |
|
nzerooringczr.e |
|
5 |
|
nzerooringczr.i |
|
6 |
|
ax-1 |
|
7 |
|
neq0 |
|
8 |
2
|
ringccat |
|
9 |
1 8
|
syl |
|
10 |
|
iszeroi |
|
11 |
9 10
|
sylan |
|
12 |
1 2 3 4
|
zrtermoringc |
|
13 |
1 5 2
|
irinitoringc |
|
14 |
9
|
ad2antrr |
|
15 |
|
simplr |
|
16 |
|
simpr |
|
17 |
14 15 16
|
initoeu1w |
|
18 |
9
|
ad2antrr |
|
19 |
|
simpr |
|
20 |
|
simplr |
|
21 |
18 19 20
|
termoeu1w |
|
22 |
|
cictr |
|
23 |
9 22
|
syl3an1 |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
3
|
eldifad |
|
27 |
4 26
|
elind |
|
28 |
2 25 1
|
ringcbas |
|
29 |
27 28
|
eleqtrrd |
|
30 |
|
zringring |
|
31 |
30
|
a1i |
|
32 |
5 31
|
elind |
|
33 |
32 28
|
eleqtrrd |
|
34 |
24 25 9 29 33
|
cic |
|
35 |
|
n0 |
|
36 |
|
eqid |
|
37 |
25 36 24 9 29 33
|
isohom |
|
38 |
|
ssn0 |
|
39 |
2 25 1 36 29 33
|
ringchom |
|
40 |
39
|
neeq1d |
|
41 |
|
zringnzr |
|
42 |
|
nrhmzr |
|
43 |
3 41 42
|
sylancl |
|
44 |
|
eqneqall |
|
45 |
43 44
|
syl |
|
46 |
40 45
|
sylbid |
|
47 |
38 46
|
syl5com |
|
48 |
47
|
expcom |
|
49 |
48
|
com13 |
|
50 |
37 49
|
mpd |
|
51 |
35 50
|
syl5bir |
|
52 |
34 51
|
sylbid |
|
53 |
52
|
3ad2ant1 |
|
54 |
23 53
|
mpd |
|
55 |
54
|
3exp |
|
56 |
55
|
a1dd |
|
57 |
56
|
ad2antrr |
|
58 |
21 57
|
mpd |
|
59 |
58
|
exp31 |
|
60 |
59
|
com34 |
|
61 |
60
|
com25 |
|
62 |
61
|
ad2antrr |
|
63 |
17 62
|
mpd |
|
64 |
63
|
ex |
|
65 |
64
|
com25 |
|
66 |
65
|
expimpd |
|
67 |
66
|
com23 |
|
68 |
67
|
impd |
|
69 |
68
|
com24 |
|
70 |
13 69
|
mpd |
|
71 |
12 70
|
mpd |
|
72 |
71
|
adantr |
|
73 |
11 72
|
mpd |
|
74 |
73
|
expcom |
|
75 |
74
|
exlimiv |
|
76 |
7 75
|
sylbi |
|
77 |
6 76
|
pm2.61i |
|