Metamath Proof Explorer


Theorem nzerooringczr

Description: There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in Adamek p. 103. (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses nzerooringczr.u φ U V
nzerooringczr.c C = RingCat U
nzerooringczr.z φ Z Ring NzRing
nzerooringczr.e φ Z U
nzerooringczr.i φ ring U
Assertion nzerooringczr φ ZeroO C =

Proof

Step Hyp Ref Expression
1 nzerooringczr.u φ U V
2 nzerooringczr.c C = RingCat U
3 nzerooringczr.z φ Z Ring NzRing
4 nzerooringczr.e φ Z U
5 nzerooringczr.i φ ring U
6 ax-1 ZeroO C = φ ZeroO C =
7 neq0 ¬ ZeroO C = h h ZeroO C
8 2 ringccat U V C Cat
9 1 8 syl φ C Cat
10 iszeroi C Cat h ZeroO C h Base C h InitO C h TermO C
11 9 10 sylan φ h ZeroO C h Base C h InitO C h TermO C
12 1 2 3 4 zrtermoringc φ Z TermO C
13 1 5 2 irinitoringc φ ring InitO C
14 9 ad2antrr φ h InitO C ring InitO C C Cat
15 simplr φ h InitO C ring InitO C h InitO C
16 simpr φ h InitO C ring InitO C ring InitO C
17 14 15 16 initoeu1w φ h InitO C ring InitO C h 𝑐 C ring
18 9 ad2antrr φ h TermO C Z TermO C C Cat
19 simpr φ h TermO C Z TermO C Z TermO C
20 simplr φ h TermO C Z TermO C h TermO C
21 18 19 20 termoeu1w φ h TermO C Z TermO C Z 𝑐 C h
22 cictr C Cat Z 𝑐 C h h 𝑐 C ring Z 𝑐 C ring
23 9 22 syl3an1 φ Z 𝑐 C h h 𝑐 C ring Z 𝑐 C ring
24 eqid Iso C = Iso C
25 eqid Base C = Base C
26 3 eldifad φ Z Ring
27 4 26 elind φ Z U Ring
28 2 25 1 ringcbas φ Base C = U Ring
29 27 28 eleqtrrd φ Z Base C
30 zringring ring Ring
31 30 a1i φ ring Ring
32 5 31 elind φ ring U Ring
33 32 28 eleqtrrd φ ring Base C
34 24 25 9 29 33 cic φ Z 𝑐 C ring f f Z Iso C ring
35 n0 Z Iso C ring f f Z Iso C ring
36 eqid Hom C = Hom C
37 25 36 24 9 29 33 isohom φ Z Iso C ring Z Hom C ring
38 ssn0 Z Iso C ring Z Hom C ring Z Iso C ring Z Hom C ring
39 2 25 1 36 29 33 ringchom φ Z Hom C ring = Z RingHom ring
40 39 neeq1d φ Z Hom C ring Z RingHom ring
41 zringnzr ring NzRing
42 nrhmzr Z Ring NzRing ring NzRing Z RingHom ring =
43 3 41 42 sylancl φ Z RingHom ring =
44 eqneqall Z RingHom ring = Z RingHom ring ZeroO C =
45 43 44 syl φ Z RingHom ring ZeroO C =
46 40 45 sylbid φ Z Hom C ring ZeroO C =
47 38 46 syl5com Z Iso C ring Z Hom C ring Z Iso C ring φ ZeroO C =
48 47 expcom Z Iso C ring Z Iso C ring Z Hom C ring φ ZeroO C =
49 48 com13 φ Z Iso C ring Z Hom C ring Z Iso C ring ZeroO C =
50 37 49 mpd φ Z Iso C ring ZeroO C =
51 35 50 syl5bir φ f f Z Iso C ring ZeroO C =
52 34 51 sylbid φ Z 𝑐 C ring ZeroO C =
53 52 3ad2ant1 φ Z 𝑐 C h h 𝑐 C ring Z 𝑐 C ring ZeroO C =
54 23 53 mpd φ Z 𝑐 C h h 𝑐 C ring ZeroO C =
55 54 3exp φ Z 𝑐 C h h 𝑐 C ring ZeroO C =
56 55 a1dd φ Z 𝑐 C h h Base C h 𝑐 C ring ZeroO C =
57 56 ad2antrr φ h TermO C Z TermO C Z 𝑐 C h h Base C h 𝑐 C ring ZeroO C =
58 21 57 mpd φ h TermO C Z TermO C h Base C h 𝑐 C ring ZeroO C =
59 58 exp31 φ h TermO C Z TermO C h Base C h 𝑐 C ring ZeroO C =
60 59 com34 φ h TermO C h Base C Z TermO C h 𝑐 C ring ZeroO C =
61 60 com25 φ h 𝑐 C ring h Base C Z TermO C h TermO C ZeroO C =
62 61 ad2antrr φ h InitO C ring InitO C h 𝑐 C ring h Base C Z TermO C h TermO C ZeroO C =
63 17 62 mpd φ h InitO C ring InitO C h Base C Z TermO C h TermO C ZeroO C =
64 63 ex φ h InitO C ring InitO C h Base C Z TermO C h TermO C ZeroO C =
65 64 com25 φ h InitO C h TermO C h Base C Z TermO C ring InitO C ZeroO C =
66 65 expimpd φ h InitO C h TermO C h Base C Z TermO C ring InitO C ZeroO C =
67 66 com23 φ h Base C h InitO C h TermO C Z TermO C ring InitO C ZeroO C =
68 67 impd φ h Base C h InitO C h TermO C Z TermO C ring InitO C ZeroO C =
69 68 com24 φ ring InitO C Z TermO C h Base C h InitO C h TermO C ZeroO C =
70 13 69 mpd φ Z TermO C h Base C h InitO C h TermO C ZeroO C =
71 12 70 mpd φ h Base C h InitO C h TermO C ZeroO C =
72 71 adantr φ h ZeroO C h Base C h InitO C h TermO C ZeroO C =
73 11 72 mpd φ h ZeroO C ZeroO C =
74 73 expcom h ZeroO C φ ZeroO C =
75 74 exlimiv h h ZeroO C φ ZeroO C =
76 7 75 sylbi ¬ ZeroO C = φ ZeroO C =
77 6 76 pm2.61i φ ZeroO C =