Metamath Proof Explorer


Theorem ringcbasbasALTV

Description: An element of the base set of the base set of the category of rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcbasbasALTV.r C = RingCatALTV U
ringcbasbasALTV.b B = Base C
ringcbasbasALTV.u φ U WUni
Assertion ringcbasbasALTV φ R B Base R U

Proof

Step Hyp Ref Expression
1 ringcbasbasALTV.r C = RingCatALTV U
2 ringcbasbasALTV.b B = Base C
3 ringcbasbasALTV.u φ U WUni
4 1 2 3 ringcbasALTV φ B = U Ring
5 4 eleq2d φ R B R U Ring
6 elin R U Ring R U R Ring
7 baseid Base = Slot Base ndx
8 simpl U WUni R U U WUni
9 simpr U WUni R U R U
10 7 8 9 wunstr U WUni R U Base R U
11 10 ex U WUni R U Base R U
12 11 3 syl11 R U φ Base R U
13 12 adantr R U R Ring φ Base R U
14 6 13 sylbi R U Ring φ Base R U
15 14 com12 φ R U Ring Base R U
16 5 15 sylbid φ R B Base R U
17 16 imp φ R B Base R U