Step |
Hyp |
Ref |
Expression |
1 |
|
ringcbasbasALTV.r |
|- C = ( RingCatALTV ` U ) |
2 |
|
ringcbasbasALTV.b |
|- B = ( Base ` C ) |
3 |
|
ringcbasbasALTV.u |
|- ( ph -> U e. WUni ) |
4 |
1 2 3
|
ringcbasALTV |
|- ( ph -> B = ( U i^i Ring ) ) |
5 |
4
|
eleq2d |
|- ( ph -> ( R e. B <-> R e. ( U i^i Ring ) ) ) |
6 |
|
elin |
|- ( R e. ( U i^i Ring ) <-> ( R e. U /\ R e. Ring ) ) |
7 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
8 |
|
simpl |
|- ( ( U e. WUni /\ R e. U ) -> U e. WUni ) |
9 |
|
simpr |
|- ( ( U e. WUni /\ R e. U ) -> R e. U ) |
10 |
7 8 9
|
wunstr |
|- ( ( U e. WUni /\ R e. U ) -> ( Base ` R ) e. U ) |
11 |
10
|
ex |
|- ( U e. WUni -> ( R e. U -> ( Base ` R ) e. U ) ) |
12 |
11 3
|
syl11 |
|- ( R e. U -> ( ph -> ( Base ` R ) e. U ) ) |
13 |
12
|
adantr |
|- ( ( R e. U /\ R e. Ring ) -> ( ph -> ( Base ` R ) e. U ) ) |
14 |
6 13
|
sylbi |
|- ( R e. ( U i^i Ring ) -> ( ph -> ( Base ` R ) e. U ) ) |
15 |
14
|
com12 |
|- ( ph -> ( R e. ( U i^i Ring ) -> ( Base ` R ) e. U ) ) |
16 |
5 15
|
sylbid |
|- ( ph -> ( R e. B -> ( Base ` R ) e. U ) ) |
17 |
16
|
imp |
|- ( ( ph /\ R e. B ) -> ( Base ` R ) e. U ) |