Metamath Proof Explorer


Theorem funiun

Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020)

Ref Expression
Assertion funiun
|- ( Fun F -> F = U_ x e. dom F { <. x , ( F ` x ) >. } )

Proof

Step Hyp Ref Expression
1 funfn
 |-  ( Fun F <-> F Fn dom F )
2 dffn5
 |-  ( F Fn dom F <-> F = ( x e. dom F |-> ( F ` x ) ) )
3 1 2 sylbb
 |-  ( Fun F -> F = ( x e. dom F |-> ( F ` x ) ) )
4 fvex
 |-  ( F ` x ) e. _V
5 4 dfmpt
 |-  ( x e. dom F |-> ( F ` x ) ) = U_ x e. dom F { <. x , ( F ` x ) >. }
6 3 5 eqtrdi
 |-  ( Fun F -> F = U_ x e. dom F { <. x , ( F ` x ) >. } )