Metamath Proof Explorer


Theorem funresfunco

Description: Composition of two functions, generalization of funco . (Contributed by Alexander van der Vekens, 25-Jul-2017)

Ref Expression
Assertion funresfunco
|- ( ( Fun ( F |` ran G ) /\ Fun G ) -> Fun ( F o. G ) )

Proof

Step Hyp Ref Expression
1 funco
 |-  ( ( Fun ( F |` ran G ) /\ Fun G ) -> Fun ( ( F |` ran G ) o. G ) )
2 ssid
 |-  ran G C_ ran G
3 cores
 |-  ( ran G C_ ran G -> ( ( F |` ran G ) o. G ) = ( F o. G ) )
4 2 3 ax-mp
 |-  ( ( F |` ran G ) o. G ) = ( F o. G )
5 4 eqcomi
 |-  ( F o. G ) = ( ( F |` ran G ) o. G )
6 5 funeqi
 |-  ( Fun ( F o. G ) <-> Fun ( ( F |` ran G ) o. G ) )
7 1 6 sylibr
 |-  ( ( Fun ( F |` ran G ) /\ Fun G ) -> Fun ( F o. G ) )