| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvres |
|- ( A e. B -> ( ( F |` B ) ` A ) = ( F ` A ) ) |
| 2 |
|
fvres |
|- ( A e. B -> ( ( G |` B ) ` A ) = ( G ` A ) ) |
| 3 |
1 2
|
eqeq12d |
|- ( A e. B -> ( ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) <-> ( F ` A ) = ( G ` A ) ) ) |
| 4 |
3
|
biimprd |
|- ( A e. B -> ( ( F ` A ) = ( G ` A ) -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) ) |
| 5 |
|
nfvres |
|- ( -. A e. B -> ( ( F |` B ) ` A ) = (/) ) |
| 6 |
|
nfvres |
|- ( -. A e. B -> ( ( G |` B ) ` A ) = (/) ) |
| 7 |
5 6
|
eqtr4d |
|- ( -. A e. B -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) |
| 8 |
7
|
a1d |
|- ( -. A e. B -> ( ( F ` A ) = ( G ` A ) -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) ) |
| 9 |
4 8
|
pm2.61i |
|- ( ( F ` A ) = ( G ` A ) -> ( ( F |` B ) ` A ) = ( ( G |` B ) ` A ) ) |