Description: Deduction version of fvmpt2 . (Contributed by Glauco Siliprandi, 24-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fvmpt2df.1 | |- F/_ x A |
|
fvmpt2df.2 | |- F = ( x e. A |-> B ) |
||
fvmpt2df.3 | |- ( ( ph /\ x e. A ) -> B e. V ) |
||
Assertion | fvmpt2df | |- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt2df.1 | |- F/_ x A |
|
2 | fvmpt2df.2 | |- F = ( x e. A |-> B ) |
|
3 | fvmpt2df.3 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
4 | 2 | fveq1i | |- ( F ` x ) = ( ( x e. A |-> B ) ` x ) |
5 | id | |- ( x e. A -> x e. A ) |
|
6 | 1 | fvmpt2f | |- ( ( x e. A /\ B e. V ) -> ( ( x e. A |-> B ) ` x ) = B ) |
7 | 5 3 6 | syl2an2 | |- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
8 | 4 7 | eqtrid | |- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |