Description: Deduction version of fvmpt2 . (Contributed by Glauco Siliprandi, 24-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmpt2df.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| fvmpt2df.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | ||
| fvmpt2df.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| Assertion | fvmpt2df | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt2df.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | fvmpt2df.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 3 | fvmpt2df.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | 2 | fveq1i | ⊢ ( 𝐹 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) |
| 5 | id | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) | |
| 6 | 1 | fvmpt2f | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 7 | 5 3 6 | syl2an2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 8 | 4 7 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |