Metamath Proof Explorer


Theorem fvmpt2df

Description: Deduction version of fvmpt2 . (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses fvmpt2df.1 𝑥 𝐴
fvmpt2df.2 𝐹 = ( 𝑥𝐴𝐵 )
fvmpt2df.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
Assertion fvmpt2df ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 fvmpt2df.1 𝑥 𝐴
2 fvmpt2df.2 𝐹 = ( 𝑥𝐴𝐵 )
3 fvmpt2df.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
4 2 fveq1i ( 𝐹𝑥 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 )
5 id ( 𝑥𝐴𝑥𝐴 )
6 1 fvmpt2f ( ( 𝑥𝐴𝐵𝑉 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
7 5 3 6 syl2an2 ( ( 𝜑𝑥𝐴 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
8 4 7 eqtrid ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )