Description: Deduction version of fvmpt2 . (Contributed by Glauco Siliprandi, 24-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fvmpt2df.1 | ⊢ Ⅎ 𝑥 𝐴 | |
fvmpt2df.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | ||
fvmpt2df.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
Assertion | fvmpt2df | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt2df.1 | ⊢ Ⅎ 𝑥 𝐴 | |
2 | fvmpt2df.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
3 | fvmpt2df.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
4 | 2 | fveq1i | ⊢ ( 𝐹 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) |
5 | id | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) | |
6 | 1 | fvmpt2f | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
7 | 5 3 6 | syl2an2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
8 | 4 7 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |