Metamath Proof Explorer


Theorem fvmpt2df

Description: Deduction version of fvmpt2 . (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses fvmpt2df.1 _xA
fvmpt2df.2 F=xAB
fvmpt2df.3 φxABV
Assertion fvmpt2df φxAFx=B

Proof

Step Hyp Ref Expression
1 fvmpt2df.1 _xA
2 fvmpt2df.2 F=xAB
3 fvmpt2df.3 φxABV
4 2 fveq1i Fx=xABx
5 id xAxA
6 1 fvmpt2f xABVxABx=B
7 5 3 6 syl2an2 φxAxABx=B
8 4 7 eqtrid φxAFx=B