Metamath Proof Explorer


Theorem fvmpt2f

Description: Value of a function given by the maps-to notation. (Contributed by Thierry Arnoux, 9-Mar-2017)

Ref Expression
Hypothesis fvmpt2f.0 _xA
Assertion fvmpt2f xABCxABx=B

Proof

Step Hyp Ref Expression
1 fvmpt2f.0 _xA
2 csbeq1 y=xy/xB=x/xB
3 csbid x/xB=B
4 2 3 eqtrdi y=xy/xB=B
5 nfcv _yA
6 nfcv _yB
7 nfcsb1v _xy/xB
8 csbeq1a x=yB=y/xB
9 1 5 6 7 8 cbvmptf xAB=yAy/xB
10 4 9 fvmptg xABCxABx=B