Metamath Proof Explorer


Theorem fvresval

Description: The value of a function at a restriction is either null or the same as the function itself. (Contributed by Scott Fenton, 4-Sep-2011)

Ref Expression
Assertion fvresval
|- ( ( ( F |` B ) ` A ) = ( F ` A ) \/ ( ( F |` B ) ` A ) = (/) )

Proof

Step Hyp Ref Expression
1 exmid
 |-  ( A e. B \/ -. A e. B )
2 fvres
 |-  ( A e. B -> ( ( F |` B ) ` A ) = ( F ` A ) )
3 nfvres
 |-  ( -. A e. B -> ( ( F |` B ) ` A ) = (/) )
4 2 3 orim12i
 |-  ( ( A e. B \/ -. A e. B ) -> ( ( ( F |` B ) ` A ) = ( F ` A ) \/ ( ( F |` B ) ` A ) = (/) ) )
5 1 4 ax-mp
 |-  ( ( ( F |` B ) ` A ) = ( F ` A ) \/ ( ( F |` B ) ` A ) = (/) )