Metamath Proof Explorer


Theorem funsseq

Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012) (Proof shortened by Mario Carneiro, 3-May-2015)

Ref Expression
Assertion funsseq
|- ( ( Fun F /\ Fun G /\ dom F = dom G ) -> ( F = G <-> F C_ G ) )

Proof

Step Hyp Ref Expression
1 eqimss
 |-  ( F = G -> F C_ G )
2 simpl3
 |-  ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> dom F = dom G )
3 2 reseq2d
 |-  ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> ( G |` dom F ) = ( G |` dom G ) )
4 funssres
 |-  ( ( Fun G /\ F C_ G ) -> ( G |` dom F ) = F )
5 4 3ad2antl2
 |-  ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> ( G |` dom F ) = F )
6 simpl2
 |-  ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> Fun G )
7 funrel
 |-  ( Fun G -> Rel G )
8 resdm
 |-  ( Rel G -> ( G |` dom G ) = G )
9 6 7 8 3syl
 |-  ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> ( G |` dom G ) = G )
10 3 5 9 3eqtr3d
 |-  ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> F = G )
11 10 ex
 |-  ( ( Fun F /\ Fun G /\ dom F = dom G ) -> ( F C_ G -> F = G ) )
12 1 11 impbid2
 |-  ( ( Fun F /\ Fun G /\ dom F = dom G ) -> ( F = G <-> F C_ G ) )