| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqimss |
|- ( F = G -> F C_ G ) |
| 2 |
|
simpl3 |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> dom F = dom G ) |
| 3 |
2
|
reseq2d |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> ( G |` dom F ) = ( G |` dom G ) ) |
| 4 |
|
funssres |
|- ( ( Fun G /\ F C_ G ) -> ( G |` dom F ) = F ) |
| 5 |
4
|
3ad2antl2 |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> ( G |` dom F ) = F ) |
| 6 |
|
simpl2 |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> Fun G ) |
| 7 |
|
funrel |
|- ( Fun G -> Rel G ) |
| 8 |
|
resdm |
|- ( Rel G -> ( G |` dom G ) = G ) |
| 9 |
6 7 8
|
3syl |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> ( G |` dom G ) = G ) |
| 10 |
3 5 9
|
3eqtr3d |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> F = G ) |
| 11 |
10
|
ex |
|- ( ( Fun F /\ Fun G /\ dom F = dom G ) -> ( F C_ G -> F = G ) ) |
| 12 |
1 11
|
impbid2 |
|- ( ( Fun F /\ Fun G /\ dom F = dom G ) -> ( F = G <-> F C_ G ) ) |