Step |
Hyp |
Ref |
Expression |
1 |
|
eqimss |
|- ( F = G -> F C_ G ) |
2 |
|
simpl3 |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> dom F = dom G ) |
3 |
2
|
reseq2d |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> ( G |` dom F ) = ( G |` dom G ) ) |
4 |
|
funssres |
|- ( ( Fun G /\ F C_ G ) -> ( G |` dom F ) = F ) |
5 |
4
|
3ad2antl2 |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> ( G |` dom F ) = F ) |
6 |
|
simpl2 |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> Fun G ) |
7 |
|
funrel |
|- ( Fun G -> Rel G ) |
8 |
|
resdm |
|- ( Rel G -> ( G |` dom G ) = G ) |
9 |
6 7 8
|
3syl |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> ( G |` dom G ) = G ) |
10 |
3 5 9
|
3eqtr3d |
|- ( ( ( Fun F /\ Fun G /\ dom F = dom G ) /\ F C_ G ) -> F = G ) |
11 |
10
|
ex |
|- ( ( Fun F /\ Fun G /\ dom F = dom G ) -> ( F C_ G -> F = G ) ) |
12 |
1 11
|
impbid2 |
|- ( ( Fun F /\ Fun G /\ dom F = dom G ) -> ( F = G <-> F C_ G ) ) |