| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqimss | ⊢ ( 𝐹  =  𝐺  →  𝐹  ⊆  𝐺 ) | 
						
							| 2 |  | simpl3 | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺  ∧  dom  𝐹  =  dom  𝐺 )  ∧  𝐹  ⊆  𝐺 )  →  dom  𝐹  =  dom  𝐺 ) | 
						
							| 3 | 2 | reseq2d | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺  ∧  dom  𝐹  =  dom  𝐺 )  ∧  𝐹  ⊆  𝐺 )  →  ( 𝐺  ↾  dom  𝐹 )  =  ( 𝐺  ↾  dom  𝐺 ) ) | 
						
							| 4 |  | funssres | ⊢ ( ( Fun  𝐺  ∧  𝐹  ⊆  𝐺 )  →  ( 𝐺  ↾  dom  𝐹 )  =  𝐹 ) | 
						
							| 5 | 4 | 3ad2antl2 | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺  ∧  dom  𝐹  =  dom  𝐺 )  ∧  𝐹  ⊆  𝐺 )  →  ( 𝐺  ↾  dom  𝐹 )  =  𝐹 ) | 
						
							| 6 |  | simpl2 | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺  ∧  dom  𝐹  =  dom  𝐺 )  ∧  𝐹  ⊆  𝐺 )  →  Fun  𝐺 ) | 
						
							| 7 |  | funrel | ⊢ ( Fun  𝐺  →  Rel  𝐺 ) | 
						
							| 8 |  | resdm | ⊢ ( Rel  𝐺  →  ( 𝐺  ↾  dom  𝐺 )  =  𝐺 ) | 
						
							| 9 | 6 7 8 | 3syl | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺  ∧  dom  𝐹  =  dom  𝐺 )  ∧  𝐹  ⊆  𝐺 )  →  ( 𝐺  ↾  dom  𝐺 )  =  𝐺 ) | 
						
							| 10 | 3 5 9 | 3eqtr3d | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺  ∧  dom  𝐹  =  dom  𝐺 )  ∧  𝐹  ⊆  𝐺 )  →  𝐹  =  𝐺 ) | 
						
							| 11 | 10 | ex | ⊢ ( ( Fun  𝐹  ∧  Fun  𝐺  ∧  dom  𝐹  =  dom  𝐺 )  →  ( 𝐹  ⊆  𝐺  →  𝐹  =  𝐺 ) ) | 
						
							| 12 | 1 11 | impbid2 | ⊢ ( ( Fun  𝐹  ∧  Fun  𝐺  ∧  dom  𝐹  =  dom  𝐺 )  →  ( 𝐹  =  𝐺  ↔  𝐹  ⊆  𝐺 ) ) |