| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqimss |
⊢ ( 𝐹 = 𝐺 → 𝐹 ⊆ 𝐺 ) |
| 2 |
|
simpl3 |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → dom 𝐹 = dom 𝐺 ) |
| 3 |
2
|
reseq2d |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐺 ↾ dom 𝐹 ) = ( 𝐺 ↾ dom 𝐺 ) ) |
| 4 |
|
funssres |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐺 ↾ dom 𝐹 ) = 𝐹 ) |
| 5 |
4
|
3ad2antl2 |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐺 ↾ dom 𝐹 ) = 𝐹 ) |
| 6 |
|
simpl2 |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → Fun 𝐺 ) |
| 7 |
|
funrel |
⊢ ( Fun 𝐺 → Rel 𝐺 ) |
| 8 |
|
resdm |
⊢ ( Rel 𝐺 → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 ) |
| 9 |
6 7 8
|
3syl |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 ) |
| 10 |
3 5 9
|
3eqtr3d |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → 𝐹 = 𝐺 ) |
| 11 |
10
|
ex |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) → ( 𝐹 ⊆ 𝐺 → 𝐹 = 𝐺 ) ) |
| 12 |
1 11
|
impbid2 |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) → ( 𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺 ) ) |