Metamath Proof Explorer


Theorem funsseq

Description: Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012) (Proof shortened by Mario Carneiro, 3-May-2015)

Ref Expression
Assertion funsseq ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) → ( 𝐹 = 𝐺𝐹𝐺 ) )

Proof

Step Hyp Ref Expression
1 eqimss ( 𝐹 = 𝐺𝐹𝐺 )
2 simpl3 ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹𝐺 ) → dom 𝐹 = dom 𝐺 )
3 2 reseq2d ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹𝐺 ) → ( 𝐺 ↾ dom 𝐹 ) = ( 𝐺 ↾ dom 𝐺 ) )
4 funssres ( ( Fun 𝐺𝐹𝐺 ) → ( 𝐺 ↾ dom 𝐹 ) = 𝐹 )
5 4 3ad2antl2 ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹𝐺 ) → ( 𝐺 ↾ dom 𝐹 ) = 𝐹 )
6 simpl2 ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹𝐺 ) → Fun 𝐺 )
7 funrel ( Fun 𝐺 → Rel 𝐺 )
8 resdm ( Rel 𝐺 → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 )
9 6 7 8 3syl ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹𝐺 ) → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 )
10 3 5 9 3eqtr3d ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹𝐺 ) → 𝐹 = 𝐺 )
11 10 ex ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) → ( 𝐹𝐺𝐹 = 𝐺 ) )
12 1 11 impbid2 ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) → ( 𝐹 = 𝐺𝐹𝐺 ) )