Step |
Hyp |
Ref |
Expression |
1 |
|
eqimss |
⊢ ( 𝐹 = 𝐺 → 𝐹 ⊆ 𝐺 ) |
2 |
|
simpl3 |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → dom 𝐹 = dom 𝐺 ) |
3 |
2
|
reseq2d |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐺 ↾ dom 𝐹 ) = ( 𝐺 ↾ dom 𝐺 ) ) |
4 |
|
funssres |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐺 ↾ dom 𝐹 ) = 𝐹 ) |
5 |
4
|
3ad2antl2 |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐺 ↾ dom 𝐹 ) = 𝐹 ) |
6 |
|
simpl2 |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → Fun 𝐺 ) |
7 |
|
funrel |
⊢ ( Fun 𝐺 → Rel 𝐺 ) |
8 |
|
resdm |
⊢ ( Rel 𝐺 → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 ) |
9 |
6 7 8
|
3syl |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 ) |
10 |
3 5 9
|
3eqtr3d |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) ∧ 𝐹 ⊆ 𝐺 ) → 𝐹 = 𝐺 ) |
11 |
10
|
ex |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) → ( 𝐹 ⊆ 𝐺 → 𝐹 = 𝐺 ) ) |
12 |
1 11
|
impbid2 |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺 ) → ( 𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺 ) ) |