| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fununiq.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | fununiq.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | fununiq.3 | ⊢ 𝐶  ∈  V | 
						
							| 4 |  | dffun2 | ⊢ ( Fun  𝐹  ↔  ( Rel  𝐹  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 5 |  | breq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥 𝐹 𝑦  ↔  𝐴 𝐹 𝐵 ) ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( 𝑥 𝐹 𝑦  ↔  𝐴 𝐹 𝐵 ) ) | 
						
							| 7 |  | breq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑧  =  𝐶 )  →  ( 𝑥 𝐹 𝑧  ↔  𝐴 𝐹 𝐶 ) ) | 
						
							| 8 | 7 | 3adant2 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( 𝑥 𝐹 𝑧  ↔  𝐴 𝐹 𝐶 ) ) | 
						
							| 9 | 6 8 | anbi12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  ↔  ( 𝐴 𝐹 𝐵  ∧  𝐴 𝐹 𝐶 ) ) ) | 
						
							| 10 |  | eqeq12 | ⊢ ( ( 𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( 𝑦  =  𝑧  ↔  𝐵  =  𝐶 ) ) | 
						
							| 11 | 10 | 3adant1 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( 𝑦  =  𝑧  ↔  𝐵  =  𝐶 ) ) | 
						
							| 12 | 9 11 | imbi12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 )  ↔  ( ( 𝐴 𝐹 𝐵  ∧  𝐴 𝐹 𝐶 )  →  𝐵  =  𝐶 ) ) ) | 
						
							| 13 | 12 | spc3gv | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V  ∧  𝐶  ∈  V )  →  ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 )  →  ( ( 𝐴 𝐹 𝐵  ∧  𝐴 𝐹 𝐶 )  →  𝐵  =  𝐶 ) ) ) | 
						
							| 14 | 1 2 3 13 | mp3an | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑧 )  →  𝑦  =  𝑧 )  →  ( ( 𝐴 𝐹 𝐵  ∧  𝐴 𝐹 𝐶 )  →  𝐵  =  𝐶 ) ) | 
						
							| 15 | 4 14 | simplbiim | ⊢ ( Fun  𝐹  →  ( ( 𝐴 𝐹 𝐵  ∧  𝐴 𝐹 𝐶 )  →  𝐵  =  𝐶 ) ) |