Step |
Hyp |
Ref |
Expression |
1 |
|
fununiq.1 |
⊢ 𝐴 ∈ V |
2 |
|
fununiq.2 |
⊢ 𝐵 ∈ V |
3 |
|
fununiq.3 |
⊢ 𝐶 ∈ V |
4 |
|
dffun2 |
⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
5 |
|
breq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 𝐹 𝑦 ↔ 𝐴 𝐹 𝐵 ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑥 𝐹 𝑦 ↔ 𝐴 𝐹 𝐵 ) ) |
7 |
|
breq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑧 = 𝐶 ) → ( 𝑥 𝐹 𝑧 ↔ 𝐴 𝐹 𝐶 ) ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑥 𝐹 𝑧 ↔ 𝐴 𝐹 𝐶 ) ) |
9 |
6 8
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) ↔ ( 𝐴 𝐹 𝐵 ∧ 𝐴 𝐹 𝐶 ) ) ) |
10 |
|
eqeq12 |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑦 = 𝑧 ↔ 𝐵 = 𝐶 ) ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑦 = 𝑧 ↔ 𝐵 = 𝐶 ) ) |
12 |
9 11
|
imbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) ↔ ( ( 𝐴 𝐹 𝐵 ∧ 𝐴 𝐹 𝐶 ) → 𝐵 = 𝐶 ) ) ) |
13 |
12
|
spc3gv |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ( ( 𝐴 𝐹 𝐵 ∧ 𝐴 𝐹 𝐶 ) → 𝐵 = 𝐶 ) ) ) |
14 |
1 2 3 13
|
mp3an |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑧 ) → 𝑦 = 𝑧 ) → ( ( 𝐴 𝐹 𝐵 ∧ 𝐴 𝐹 𝐶 ) → 𝐵 = 𝐶 ) ) |
15 |
4 14
|
simplbiim |
⊢ ( Fun 𝐹 → ( ( 𝐴 𝐹 𝐵 ∧ 𝐴 𝐹 𝐶 ) → 𝐵 = 𝐶 ) ) |