Metamath Proof Explorer


Theorem funbreq

Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses funbreq.1 𝐴 ∈ V
funbreq.2 𝐵 ∈ V
funbreq.3 𝐶 ∈ V
Assertion funbreq ( ( Fun 𝐹𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐶𝐵 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 funbreq.1 𝐴 ∈ V
2 funbreq.2 𝐵 ∈ V
3 funbreq.3 𝐶 ∈ V
4 1 2 3 fununiq ( Fun 𝐹 → ( ( 𝐴 𝐹 𝐵𝐴 𝐹 𝐶 ) → 𝐵 = 𝐶 ) )
5 4 expdimp ( ( Fun 𝐹𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐶𝐵 = 𝐶 ) )
6 breq2 ( 𝐵 = 𝐶 → ( 𝐴 𝐹 𝐵𝐴 𝐹 𝐶 ) )
7 6 biimpcd ( 𝐴 𝐹 𝐵 → ( 𝐵 = 𝐶𝐴 𝐹 𝐶 ) )
8 7 adantl ( ( Fun 𝐹𝐴 𝐹 𝐵 ) → ( 𝐵 = 𝐶𝐴 𝐹 𝐶 ) )
9 5 8 impbid ( ( Fun 𝐹𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐶𝐵 = 𝐶 ) )