Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funbreq.1 | ⊢ 𝐴 ∈ V | |
| funbreq.2 | ⊢ 𝐵 ∈ V | ||
| funbreq.3 | ⊢ 𝐶 ∈ V | ||
| Assertion | funbreq | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐶 ↔ 𝐵 = 𝐶 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funbreq.1 | ⊢ 𝐴 ∈ V | |
| 2 | funbreq.2 | ⊢ 𝐵 ∈ V | |
| 3 | funbreq.3 | ⊢ 𝐶 ∈ V | |
| 4 | 1 2 3 | fununiq | ⊢ ( Fun 𝐹 → ( ( 𝐴 𝐹 𝐵 ∧ 𝐴 𝐹 𝐶 ) → 𝐵 = 𝐶 ) ) | 
| 5 | 4 | expdimp | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐶 → 𝐵 = 𝐶 ) ) | 
| 6 | breq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 𝐹 𝐵 ↔ 𝐴 𝐹 𝐶 ) ) | |
| 7 | 6 | biimpcd | ⊢ ( 𝐴 𝐹 𝐵 → ( 𝐵 = 𝐶 → 𝐴 𝐹 𝐶 ) ) | 
| 8 | 7 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ( 𝐵 = 𝐶 → 𝐴 𝐹 𝐶 ) ) | 
| 9 | 5 8 | impbid | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐶 ↔ 𝐵 = 𝐶 ) ) |