Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funbreq.1 | ⊢ 𝐴 ∈ V | |
funbreq.2 | ⊢ 𝐵 ∈ V | ||
funbreq.3 | ⊢ 𝐶 ∈ V | ||
Assertion | funbreq | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐶 ↔ 𝐵 = 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funbreq.1 | ⊢ 𝐴 ∈ V | |
2 | funbreq.2 | ⊢ 𝐵 ∈ V | |
3 | funbreq.3 | ⊢ 𝐶 ∈ V | |
4 | 1 2 3 | fununiq | ⊢ ( Fun 𝐹 → ( ( 𝐴 𝐹 𝐵 ∧ 𝐴 𝐹 𝐶 ) → 𝐵 = 𝐶 ) ) |
5 | 4 | expdimp | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐶 → 𝐵 = 𝐶 ) ) |
6 | breq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 𝐹 𝐵 ↔ 𝐴 𝐹 𝐶 ) ) | |
7 | 6 | biimpcd | ⊢ ( 𝐴 𝐹 𝐵 → ( 𝐵 = 𝐶 → 𝐴 𝐹 𝐶 ) ) |
8 | 7 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ( 𝐵 = 𝐶 → 𝐴 𝐹 𝐶 ) ) |
9 | 5 8 | impbid | ⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ( 𝐴 𝐹 𝐶 ↔ 𝐵 = 𝐶 ) ) |