Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funbreq.1 | |- A e. _V | |
| funbreq.2 | |- B e. _V | ||
| funbreq.3 | |- C e. _V | ||
| Assertion | funbreq | |- ( ( Fun F /\ A F B ) -> ( A F C <-> B = C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funbreq.1 | |- A e. _V | |
| 2 | funbreq.2 | |- B e. _V | |
| 3 | funbreq.3 | |- C e. _V | |
| 4 | 1 2 3 | fununiq | |- ( Fun F -> ( ( A F B /\ A F C ) -> B = C ) ) | 
| 5 | 4 | expdimp | |- ( ( Fun F /\ A F B ) -> ( A F C -> B = C ) ) | 
| 6 | breq2 | |- ( B = C -> ( A F B <-> A F C ) ) | |
| 7 | 6 | biimpcd | |- ( A F B -> ( B = C -> A F C ) ) | 
| 8 | 7 | adantl | |- ( ( Fun F /\ A F B ) -> ( B = C -> A F C ) ) | 
| 9 | 5 8 | impbid | |- ( ( Fun F /\ A F B ) -> ( A F C <-> B = C ) ) |