Metamath Proof Explorer


Theorem funbreq

Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses funbreq.1
|- A e. _V
funbreq.2
|- B e. _V
funbreq.3
|- C e. _V
Assertion funbreq
|- ( ( Fun F /\ A F B ) -> ( A F C <-> B = C ) )

Proof

Step Hyp Ref Expression
1 funbreq.1
 |-  A e. _V
2 funbreq.2
 |-  B e. _V
3 funbreq.3
 |-  C e. _V
4 1 2 3 fununiq
 |-  ( Fun F -> ( ( A F B /\ A F C ) -> B = C ) )
5 4 expdimp
 |-  ( ( Fun F /\ A F B ) -> ( A F C -> B = C ) )
6 breq2
 |-  ( B = C -> ( A F B <-> A F C ) )
7 6 biimpcd
 |-  ( A F B -> ( B = C -> A F C ) )
8 7 adantl
 |-  ( ( Fun F /\ A F B ) -> ( B = C -> A F C ) )
9 5 8 impbid
 |-  ( ( Fun F /\ A F B ) -> ( A F C <-> B = C ) )