Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funbreq.1 | |- A e. _V |
|
funbreq.2 | |- B e. _V |
||
funbreq.3 | |- C e. _V |
||
Assertion | funbreq | |- ( ( Fun F /\ A F B ) -> ( A F C <-> B = C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funbreq.1 | |- A e. _V |
|
2 | funbreq.2 | |- B e. _V |
|
3 | funbreq.3 | |- C e. _V |
|
4 | 1 2 3 | fununiq | |- ( Fun F -> ( ( A F B /\ A F C ) -> B = C ) ) |
5 | 4 | expdimp | |- ( ( Fun F /\ A F B ) -> ( A F C -> B = C ) ) |
6 | breq2 | |- ( B = C -> ( A F B <-> A F C ) ) |
|
7 | 6 | biimpcd | |- ( A F B -> ( B = C -> A F C ) ) |
8 | 7 | adantl | |- ( ( Fun F /\ A F B ) -> ( B = C -> A F C ) ) |
9 | 5 8 | impbid | |- ( ( Fun F /\ A F B ) -> ( A F C <-> B = C ) ) |