Step |
Hyp |
Ref |
Expression |
1 |
|
fununiq.1 |
|- A e. _V |
2 |
|
fununiq.2 |
|- B e. _V |
3 |
|
fununiq.3 |
|- C e. _V |
4 |
|
dffun2 |
|- ( Fun F <-> ( Rel F /\ A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) ) ) |
5 |
|
breq12 |
|- ( ( x = A /\ y = B ) -> ( x F y <-> A F B ) ) |
6 |
5
|
3adant3 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( x F y <-> A F B ) ) |
7 |
|
breq12 |
|- ( ( x = A /\ z = C ) -> ( x F z <-> A F C ) ) |
8 |
7
|
3adant2 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( x F z <-> A F C ) ) |
9 |
6 8
|
anbi12d |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ( x F y /\ x F z ) <-> ( A F B /\ A F C ) ) ) |
10 |
|
eqeq12 |
|- ( ( y = B /\ z = C ) -> ( y = z <-> B = C ) ) |
11 |
10
|
3adant1 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( y = z <-> B = C ) ) |
12 |
9 11
|
imbi12d |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ( ( x F y /\ x F z ) -> y = z ) <-> ( ( A F B /\ A F C ) -> B = C ) ) ) |
13 |
12
|
spc3gv |
|- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) -> ( ( A F B /\ A F C ) -> B = C ) ) ) |
14 |
1 2 3 13
|
mp3an |
|- ( A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) -> ( ( A F B /\ A F C ) -> B = C ) ) |
15 |
4 14
|
simplbiim |
|- ( Fun F -> ( ( A F B /\ A F C ) -> B = C ) ) |