Metamath Proof Explorer


Theorem fununiq

Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses fununiq.1
|- A e. _V
fununiq.2
|- B e. _V
fununiq.3
|- C e. _V
Assertion fununiq
|- ( Fun F -> ( ( A F B /\ A F C ) -> B = C ) )

Proof

Step Hyp Ref Expression
1 fununiq.1
 |-  A e. _V
2 fununiq.2
 |-  B e. _V
3 fununiq.3
 |-  C e. _V
4 dffun2
 |-  ( Fun F <-> ( Rel F /\ A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) ) )
5 breq12
 |-  ( ( x = A /\ y = B ) -> ( x F y <-> A F B ) )
6 5 3adant3
 |-  ( ( x = A /\ y = B /\ z = C ) -> ( x F y <-> A F B ) )
7 breq12
 |-  ( ( x = A /\ z = C ) -> ( x F z <-> A F C ) )
8 7 3adant2
 |-  ( ( x = A /\ y = B /\ z = C ) -> ( x F z <-> A F C ) )
9 6 8 anbi12d
 |-  ( ( x = A /\ y = B /\ z = C ) -> ( ( x F y /\ x F z ) <-> ( A F B /\ A F C ) ) )
10 eqeq12
 |-  ( ( y = B /\ z = C ) -> ( y = z <-> B = C ) )
11 10 3adant1
 |-  ( ( x = A /\ y = B /\ z = C ) -> ( y = z <-> B = C ) )
12 9 11 imbi12d
 |-  ( ( x = A /\ y = B /\ z = C ) -> ( ( ( x F y /\ x F z ) -> y = z ) <-> ( ( A F B /\ A F C ) -> B = C ) ) )
13 12 spc3gv
 |-  ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) -> ( ( A F B /\ A F C ) -> B = C ) ) )
14 1 2 3 13 mp3an
 |-  ( A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) -> ( ( A F B /\ A F C ) -> B = C ) )
15 4 14 simplbiim
 |-  ( Fun F -> ( ( A F B /\ A F C ) -> B = C ) )