| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fununiq.1 |  |-  A e. _V | 
						
							| 2 |  | fununiq.2 |  |-  B e. _V | 
						
							| 3 |  | fununiq.3 |  |-  C e. _V | 
						
							| 4 |  | dffun2 |  |-  ( Fun F <-> ( Rel F /\ A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) ) ) | 
						
							| 5 |  | breq12 |  |-  ( ( x = A /\ y = B ) -> ( x F y <-> A F B ) ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( x F y <-> A F B ) ) | 
						
							| 7 |  | breq12 |  |-  ( ( x = A /\ z = C ) -> ( x F z <-> A F C ) ) | 
						
							| 8 | 7 | 3adant2 |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( x F z <-> A F C ) ) | 
						
							| 9 | 6 8 | anbi12d |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( ( x F y /\ x F z ) <-> ( A F B /\ A F C ) ) ) | 
						
							| 10 |  | eqeq12 |  |-  ( ( y = B /\ z = C ) -> ( y = z <-> B = C ) ) | 
						
							| 11 | 10 | 3adant1 |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( y = z <-> B = C ) ) | 
						
							| 12 | 9 11 | imbi12d |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( ( ( x F y /\ x F z ) -> y = z ) <-> ( ( A F B /\ A F C ) -> B = C ) ) ) | 
						
							| 13 | 12 | spc3gv |  |-  ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) -> ( ( A F B /\ A F C ) -> B = C ) ) ) | 
						
							| 14 | 1 2 3 13 | mp3an |  |-  ( A. x A. y A. z ( ( x F y /\ x F z ) -> y = z ) -> ( ( A F B /\ A F C ) -> B = C ) ) | 
						
							| 15 | 4 14 | simplbiim |  |-  ( Fun F -> ( ( A F B /\ A F C ) -> B = C ) ) |