Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Properties of functions and mappings
fununiq
Next ⟩
funbreq
Metamath Proof Explorer
Ascii
Unicode
Theorem
fununiq
Description:
The uniqueness condition of functions.
(Contributed by
Scott Fenton
, 18-Feb-2013)
Ref
Expression
Hypotheses
fununiq.1
⊢
A
∈
V
fununiq.2
⊢
B
∈
V
fununiq.3
⊢
C
∈
V
Assertion
fununiq
⊢
Fun
⁡
F
→
A
F
B
∧
A
F
C
→
B
=
C
Proof
Step
Hyp
Ref
Expression
1
fununiq.1
⊢
A
∈
V
2
fununiq.2
⊢
B
∈
V
3
fununiq.3
⊢
C
∈
V
4
dffun2
⊢
Fun
⁡
F
↔
Rel
⁡
F
∧
∀
x
∀
y
∀
z
x
F
y
∧
x
F
z
→
y
=
z
5
breq12
⊢
x
=
A
∧
y
=
B
→
x
F
y
↔
A
F
B
6
5
3adant3
⊢
x
=
A
∧
y
=
B
∧
z
=
C
→
x
F
y
↔
A
F
B
7
breq12
⊢
x
=
A
∧
z
=
C
→
x
F
z
↔
A
F
C
8
7
3adant2
⊢
x
=
A
∧
y
=
B
∧
z
=
C
→
x
F
z
↔
A
F
C
9
6
8
anbi12d
⊢
x
=
A
∧
y
=
B
∧
z
=
C
→
x
F
y
∧
x
F
z
↔
A
F
B
∧
A
F
C
10
eqeq12
⊢
y
=
B
∧
z
=
C
→
y
=
z
↔
B
=
C
11
10
3adant1
⊢
x
=
A
∧
y
=
B
∧
z
=
C
→
y
=
z
↔
B
=
C
12
9
11
imbi12d
⊢
x
=
A
∧
y
=
B
∧
z
=
C
→
x
F
y
∧
x
F
z
→
y
=
z
↔
A
F
B
∧
A
F
C
→
B
=
C
13
12
spc3gv
⊢
A
∈
V
∧
B
∈
V
∧
C
∈
V
→
∀
x
∀
y
∀
z
x
F
y
∧
x
F
z
→
y
=
z
→
A
F
B
∧
A
F
C
→
B
=
C
14
1
2
3
13
mp3an
⊢
∀
x
∀
y
∀
z
x
F
y
∧
x
F
z
→
y
=
z
→
A
F
B
∧
A
F
C
→
B
=
C
15
4
14
simplbiim
⊢
Fun
⁡
F
→
A
F
B
∧
A
F
C
→
B
=
C