Metamath Proof Explorer


Theorem fununiq

Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses fununiq.1 A V
fununiq.2 B V
fununiq.3 C V
Assertion fununiq Fun F A F B A F C B = C

Proof

Step Hyp Ref Expression
1 fununiq.1 A V
2 fununiq.2 B V
3 fununiq.3 C V
4 dffun2 Fun F Rel F x y z x F y x F z y = z
5 breq12 x = A y = B x F y A F B
6 5 3adant3 x = A y = B z = C x F y A F B
7 breq12 x = A z = C x F z A F C
8 7 3adant2 x = A y = B z = C x F z A F C
9 6 8 anbi12d x = A y = B z = C x F y x F z A F B A F C
10 eqeq12 y = B z = C y = z B = C
11 10 3adant1 x = A y = B z = C y = z B = C
12 9 11 imbi12d x = A y = B z = C x F y x F z y = z A F B A F C B = C
13 12 spc3gv A V B V C V x y z x F y x F z y = z A F B A F C B = C
14 1 2 3 13 mp3an x y z x F y x F z y = z A F B A F C B = C
15 4 14 simplbiim Fun F A F B A F C B = C