Description: A restriction of the identity relation is a subset of the reflexive-transitive closure of a relation. (Contributed by RP, 22-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvrtrcllb0da.rel | |- ( ph -> Rel R ) |
|
| fvrtrcllb0da.r | |- ( ph -> R e. _V ) |
||
| Assertion | fvrtrcllb0da | |- ( ph -> ( _I |` U. U. R ) C_ ( t* ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvrtrcllb0da.rel | |- ( ph -> Rel R ) |
|
| 2 | fvrtrcllb0da.r | |- ( ph -> R e. _V ) |
|
| 3 | dfrtrcl3 | |- t* = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) |
|
| 4 | nn0ex | |- NN0 e. _V |
|
| 5 | 4 | a1i | |- ( ph -> NN0 e. _V ) |
| 6 | 0nn0 | |- 0 e. NN0 |
|
| 7 | 6 | a1i | |- ( ph -> 0 e. NN0 ) |
| 8 | 3 2 5 1 7 | fvmptiunrelexplb0da | |- ( ph -> ( _I |` U. U. R ) C_ ( t* ` R ) ) |