Metamath Proof Explorer


Theorem fvrtrcllb0da

Description: A restriction of the identity relation is a subset of the reflexive-transitive closure of a relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvrtrcllb0da.rel
|- ( ph -> Rel R )
fvrtrcllb0da.r
|- ( ph -> R e. _V )
Assertion fvrtrcllb0da
|- ( ph -> ( _I |` U. U. R ) C_ ( t* ` R ) )

Proof

Step Hyp Ref Expression
1 fvrtrcllb0da.rel
 |-  ( ph -> Rel R )
2 fvrtrcllb0da.r
 |-  ( ph -> R e. _V )
3 dfrtrcl3
 |-  t* = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) )
4 nn0ex
 |-  NN0 e. _V
5 4 a1i
 |-  ( ph -> NN0 e. _V )
6 0nn0
 |-  0 e. NN0
7 6 a1i
 |-  ( ph -> 0 e. NN0 )
8 3 2 5 1 7 fvmptiunrelexplb0da
 |-  ( ph -> ( _I |` U. U. R ) C_ ( t* ` R ) )