Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fvmptiunrelexplb0da.c | |- C = ( r e. _V |-> U_ n e. N ( r ^r n ) ) |
|
fvmptiunrelexplb0da.r | |- ( ph -> R e. _V ) |
||
fvmptiunrelexplb0da.n | |- ( ph -> N e. _V ) |
||
fvmptiunrelexplb0da.rel | |- ( ph -> Rel R ) |
||
fvmptiunrelexplb0da.0 | |- ( ph -> 0 e. N ) |
||
Assertion | fvmptiunrelexplb0da | |- ( ph -> ( _I |` U. U. R ) C_ ( C ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptiunrelexplb0da.c | |- C = ( r e. _V |-> U_ n e. N ( r ^r n ) ) |
|
2 | fvmptiunrelexplb0da.r | |- ( ph -> R e. _V ) |
|
3 | fvmptiunrelexplb0da.n | |- ( ph -> N e. _V ) |
|
4 | fvmptiunrelexplb0da.rel | |- ( ph -> Rel R ) |
|
5 | fvmptiunrelexplb0da.0 | |- ( ph -> 0 e. N ) |
|
6 | relfld | |- ( Rel R -> U. U. R = ( dom R u. ran R ) ) |
|
7 | 4 6 | syl | |- ( ph -> U. U. R = ( dom R u. ran R ) ) |
8 | 7 | reseq2d | |- ( ph -> ( _I |` U. U. R ) = ( _I |` ( dom R u. ran R ) ) ) |
9 | 1 2 3 5 | fvmptiunrelexplb0d | |- ( ph -> ( _I |` ( dom R u. ran R ) ) C_ ( C ` R ) ) |
10 | 8 9 | eqsstrd | |- ( ph -> ( _I |` U. U. R ) C_ ( C ` R ) ) |