Metamath Proof Explorer


Theorem fvmptiunrelexplb0da

Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvmptiunrelexplb0da.c
|- C = ( r e. _V |-> U_ n e. N ( r ^r n ) )
fvmptiunrelexplb0da.r
|- ( ph -> R e. _V )
fvmptiunrelexplb0da.n
|- ( ph -> N e. _V )
fvmptiunrelexplb0da.rel
|- ( ph -> Rel R )
fvmptiunrelexplb0da.0
|- ( ph -> 0 e. N )
Assertion fvmptiunrelexplb0da
|- ( ph -> ( _I |` U. U. R ) C_ ( C ` R ) )

Proof

Step Hyp Ref Expression
1 fvmptiunrelexplb0da.c
 |-  C = ( r e. _V |-> U_ n e. N ( r ^r n ) )
2 fvmptiunrelexplb0da.r
 |-  ( ph -> R e. _V )
3 fvmptiunrelexplb0da.n
 |-  ( ph -> N e. _V )
4 fvmptiunrelexplb0da.rel
 |-  ( ph -> Rel R )
5 fvmptiunrelexplb0da.0
 |-  ( ph -> 0 e. N )
6 relfld
 |-  ( Rel R -> U. U. R = ( dom R u. ran R ) )
7 4 6 syl
 |-  ( ph -> U. U. R = ( dom R u. ran R ) )
8 7 reseq2d
 |-  ( ph -> ( _I |` U. U. R ) = ( _I |` ( dom R u. ran R ) ) )
9 1 2 3 5 fvmptiunrelexplb0d
 |-  ( ph -> ( _I |` ( dom R u. ran R ) ) C_ ( C ` R ) )
10 8 9 eqsstrd
 |-  ( ph -> ( _I |` U. U. R ) C_ ( C ` R ) )