| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptiunrelexplb0d.c |
|- C = ( r e. _V |-> U_ n e. N ( r ^r n ) ) |
| 2 |
|
fvmptiunrelexplb0d.r |
|- ( ph -> R e. _V ) |
| 3 |
|
fvmptiunrelexplb0d.n |
|- ( ph -> N e. _V ) |
| 4 |
|
fvmptiunrelexplb0d.0 |
|- ( ph -> 0 e. N ) |
| 5 |
|
oveq2 |
|- ( n = 0 -> ( R ^r n ) = ( R ^r 0 ) ) |
| 6 |
5
|
ssiun2s |
|- ( 0 e. N -> ( R ^r 0 ) C_ U_ n e. N ( R ^r n ) ) |
| 7 |
4 6
|
syl |
|- ( ph -> ( R ^r 0 ) C_ U_ n e. N ( R ^r n ) ) |
| 8 |
|
relexp0g |
|- ( R e. _V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 9 |
2 8
|
syl |
|- ( ph -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
| 10 |
|
oveq1 |
|- ( r = R -> ( r ^r n ) = ( R ^r n ) ) |
| 11 |
10
|
iuneq2d |
|- ( r = R -> U_ n e. N ( r ^r n ) = U_ n e. N ( R ^r n ) ) |
| 12 |
|
ovex |
|- ( R ^r n ) e. _V |
| 13 |
12
|
rgenw |
|- A. n e. N ( R ^r n ) e. _V |
| 14 |
|
iunexg |
|- ( ( N e. _V /\ A. n e. N ( R ^r n ) e. _V ) -> U_ n e. N ( R ^r n ) e. _V ) |
| 15 |
3 13 14
|
sylancl |
|- ( ph -> U_ n e. N ( R ^r n ) e. _V ) |
| 16 |
1 11 2 15
|
fvmptd3 |
|- ( ph -> ( C ` R ) = U_ n e. N ( R ^r n ) ) |
| 17 |
16
|
eqcomd |
|- ( ph -> U_ n e. N ( R ^r n ) = ( C ` R ) ) |
| 18 |
7 9 17
|
3sstr3d |
|- ( ph -> ( _I |` ( dom R u. ran R ) ) C_ ( C ` R ) ) |