Metamath Proof Explorer


Theorem fvmptiunrelexplb0d

Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvmptiunrelexplb0d.c
|- C = ( r e. _V |-> U_ n e. N ( r ^r n ) )
fvmptiunrelexplb0d.r
|- ( ph -> R e. _V )
fvmptiunrelexplb0d.n
|- ( ph -> N e. _V )
fvmptiunrelexplb0d.0
|- ( ph -> 0 e. N )
Assertion fvmptiunrelexplb0d
|- ( ph -> ( _I |` ( dom R u. ran R ) ) C_ ( C ` R ) )

Proof

Step Hyp Ref Expression
1 fvmptiunrelexplb0d.c
 |-  C = ( r e. _V |-> U_ n e. N ( r ^r n ) )
2 fvmptiunrelexplb0d.r
 |-  ( ph -> R e. _V )
3 fvmptiunrelexplb0d.n
 |-  ( ph -> N e. _V )
4 fvmptiunrelexplb0d.0
 |-  ( ph -> 0 e. N )
5 oveq2
 |-  ( n = 0 -> ( R ^r n ) = ( R ^r 0 ) )
6 5 ssiun2s
 |-  ( 0 e. N -> ( R ^r 0 ) C_ U_ n e. N ( R ^r n ) )
7 4 6 syl
 |-  ( ph -> ( R ^r 0 ) C_ U_ n e. N ( R ^r n ) )
8 relexp0g
 |-  ( R e. _V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) )
9 2 8 syl
 |-  ( ph -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) )
10 oveq1
 |-  ( r = R -> ( r ^r n ) = ( R ^r n ) )
11 10 iuneq2d
 |-  ( r = R -> U_ n e. N ( r ^r n ) = U_ n e. N ( R ^r n ) )
12 ovex
 |-  ( R ^r n ) e. _V
13 12 rgenw
 |-  A. n e. N ( R ^r n ) e. _V
14 iunexg
 |-  ( ( N e. _V /\ A. n e. N ( R ^r n ) e. _V ) -> U_ n e. N ( R ^r n ) e. _V )
15 3 13 14 sylancl
 |-  ( ph -> U_ n e. N ( R ^r n ) e. _V )
16 1 11 2 15 fvmptd3
 |-  ( ph -> ( C ` R ) = U_ n e. N ( R ^r n ) )
17 16 eqcomd
 |-  ( ph -> U_ n e. N ( R ^r n ) = ( C ` R ) )
18 7 9 17 3sstr3d
 |-  ( ph -> ( _I |` ( dom R u. ran R ) ) C_ ( C ` R ) )