Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptiunrelexplb0d.c |
⊢ 𝐶 = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) ) |
2 |
|
fvmptiunrelexplb0d.r |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
3 |
|
fvmptiunrelexplb0d.n |
⊢ ( 𝜑 → 𝑁 ∈ V ) |
4 |
|
fvmptiunrelexplb0d.0 |
⊢ ( 𝜑 → 0 ∈ 𝑁 ) |
5 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 0 ) ) |
6 |
5
|
ssiun2s |
⊢ ( 0 ∈ 𝑁 → ( 𝑅 ↑𝑟 0 ) ⊆ ∪ 𝑛 ∈ 𝑁 ( 𝑅 ↑𝑟 𝑛 ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↑𝑟 0 ) ⊆ ∪ 𝑛 ∈ 𝑁 ( 𝑅 ↑𝑟 𝑛 ) ) |
8 |
|
relexp0g |
⊢ ( 𝑅 ∈ V → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
11 |
10
|
iuneq2d |
⊢ ( 𝑟 = 𝑅 → ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ 𝑁 ( 𝑅 ↑𝑟 𝑛 ) ) |
12 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
13 |
12
|
rgenw |
⊢ ∀ 𝑛 ∈ 𝑁 ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
14 |
|
iunexg |
⊢ ( ( 𝑁 ∈ V ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑅 ↑𝑟 𝑛 ) ∈ V ) → ∪ 𝑛 ∈ 𝑁 ( 𝑅 ↑𝑟 𝑛 ) ∈ V ) |
15 |
3 13 14
|
sylancl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑁 ( 𝑅 ↑𝑟 𝑛 ) ∈ V ) |
16 |
1 11 2 15
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑅 ) = ∪ 𝑛 ∈ 𝑁 ( 𝑅 ↑𝑟 𝑛 ) ) |
17 |
16
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑁 ( 𝑅 ↑𝑟 𝑛 ) = ( 𝐶 ‘ 𝑅 ) ) |
18 |
7 9 17
|
3sstr3d |
⊢ ( 𝜑 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( 𝐶 ‘ 𝑅 ) ) |