Metamath Proof Explorer


Theorem fvmptiunrelexplb0d

Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvmptiunrelexplb0d.c 𝐶 = ( 𝑟 ∈ V ↦ 𝑛𝑁 ( 𝑟𝑟 𝑛 ) )
fvmptiunrelexplb0d.r ( 𝜑𝑅 ∈ V )
fvmptiunrelexplb0d.n ( 𝜑𝑁 ∈ V )
fvmptiunrelexplb0d.0 ( 𝜑 → 0 ∈ 𝑁 )
Assertion fvmptiunrelexplb0d ( 𝜑 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( 𝐶𝑅 ) )

Proof

Step Hyp Ref Expression
1 fvmptiunrelexplb0d.c 𝐶 = ( 𝑟 ∈ V ↦ 𝑛𝑁 ( 𝑟𝑟 𝑛 ) )
2 fvmptiunrelexplb0d.r ( 𝜑𝑅 ∈ V )
3 fvmptiunrelexplb0d.n ( 𝜑𝑁 ∈ V )
4 fvmptiunrelexplb0d.0 ( 𝜑 → 0 ∈ 𝑁 )
5 oveq2 ( 𝑛 = 0 → ( 𝑅𝑟 𝑛 ) = ( 𝑅𝑟 0 ) )
6 5 ssiun2s ( 0 ∈ 𝑁 → ( 𝑅𝑟 0 ) ⊆ 𝑛𝑁 ( 𝑅𝑟 𝑛 ) )
7 4 6 syl ( 𝜑 → ( 𝑅𝑟 0 ) ⊆ 𝑛𝑁 ( 𝑅𝑟 𝑛 ) )
8 relexp0g ( 𝑅 ∈ V → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
9 2 8 syl ( 𝜑 → ( 𝑅𝑟 0 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
10 oveq1 ( 𝑟 = 𝑅 → ( 𝑟𝑟 𝑛 ) = ( 𝑅𝑟 𝑛 ) )
11 10 iuneq2d ( 𝑟 = 𝑅 𝑛𝑁 ( 𝑟𝑟 𝑛 ) = 𝑛𝑁 ( 𝑅𝑟 𝑛 ) )
12 ovex ( 𝑅𝑟 𝑛 ) ∈ V
13 12 rgenw 𝑛𝑁 ( 𝑅𝑟 𝑛 ) ∈ V
14 iunexg ( ( 𝑁 ∈ V ∧ ∀ 𝑛𝑁 ( 𝑅𝑟 𝑛 ) ∈ V ) → 𝑛𝑁 ( 𝑅𝑟 𝑛 ) ∈ V )
15 3 13 14 sylancl ( 𝜑 𝑛𝑁 ( 𝑅𝑟 𝑛 ) ∈ V )
16 1 11 2 15 fvmptd3 ( 𝜑 → ( 𝐶𝑅 ) = 𝑛𝑁 ( 𝑅𝑟 𝑛 ) )
17 16 eqcomd ( 𝜑 𝑛𝑁 ( 𝑅𝑟 𝑛 ) = ( 𝐶𝑅 ) )
18 7 9 17 3sstr3d ( 𝜑 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( 𝐶𝑅 ) )