Metamath Proof Explorer


Theorem fvmptiunrelexplb0d

Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvmptiunrelexplb0d.c C = r V n N r r n
fvmptiunrelexplb0d.r φ R V
fvmptiunrelexplb0d.n φ N V
fvmptiunrelexplb0d.0 φ 0 N
Assertion fvmptiunrelexplb0d φ I dom R ran R C R

Proof

Step Hyp Ref Expression
1 fvmptiunrelexplb0d.c C = r V n N r r n
2 fvmptiunrelexplb0d.r φ R V
3 fvmptiunrelexplb0d.n φ N V
4 fvmptiunrelexplb0d.0 φ 0 N
5 oveq2 n = 0 R r n = R r 0
6 5 ssiun2s 0 N R r 0 n N R r n
7 4 6 syl φ R r 0 n N R r n
8 relexp0g R V R r 0 = I dom R ran R
9 2 8 syl φ R r 0 = I dom R ran R
10 oveq1 r = R r r n = R r n
11 10 iuneq2d r = R n N r r n = n N R r n
12 ovex R r n V
13 12 rgenw n N R r n V
14 iunexg N V n N R r n V n N R r n V
15 3 13 14 sylancl φ n N R r n V
16 1 11 2 15 fvmptd3 φ C R = n N R r n
17 16 eqcomd φ n N R r n = C R
18 7 9 17 3sstr3d φ I dom R ran R C R