Metamath Proof Explorer


Theorem fvmptiunrelexplb0da

Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvmptiunrelexplb0da.c C = r V n N r r n
fvmptiunrelexplb0da.r φ R V
fvmptiunrelexplb0da.n φ N V
fvmptiunrelexplb0da.rel φ Rel R
fvmptiunrelexplb0da.0 φ 0 N
Assertion fvmptiunrelexplb0da φ I R C R

Proof

Step Hyp Ref Expression
1 fvmptiunrelexplb0da.c C = r V n N r r n
2 fvmptiunrelexplb0da.r φ R V
3 fvmptiunrelexplb0da.n φ N V
4 fvmptiunrelexplb0da.rel φ Rel R
5 fvmptiunrelexplb0da.0 φ 0 N
6 relfld Rel R R = dom R ran R
7 4 6 syl φ R = dom R ran R
8 7 reseq2d φ I R = I dom R ran R
9 1 2 3 5 fvmptiunrelexplb0d φ I dom R ran R C R
10 8 9 eqsstrd φ I R C R