Metamath Proof Explorer


Theorem fvmptiunrelexplb0da

Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvmptiunrelexplb0da.c 𝐶 = ( 𝑟 ∈ V ↦ 𝑛𝑁 ( 𝑟𝑟 𝑛 ) )
fvmptiunrelexplb0da.r ( 𝜑𝑅 ∈ V )
fvmptiunrelexplb0da.n ( 𝜑𝑁 ∈ V )
fvmptiunrelexplb0da.rel ( 𝜑 → Rel 𝑅 )
fvmptiunrelexplb0da.0 ( 𝜑 → 0 ∈ 𝑁 )
Assertion fvmptiunrelexplb0da ( 𝜑 → ( I ↾ 𝑅 ) ⊆ ( 𝐶𝑅 ) )

Proof

Step Hyp Ref Expression
1 fvmptiunrelexplb0da.c 𝐶 = ( 𝑟 ∈ V ↦ 𝑛𝑁 ( 𝑟𝑟 𝑛 ) )
2 fvmptiunrelexplb0da.r ( 𝜑𝑅 ∈ V )
3 fvmptiunrelexplb0da.n ( 𝜑𝑁 ∈ V )
4 fvmptiunrelexplb0da.rel ( 𝜑 → Rel 𝑅 )
5 fvmptiunrelexplb0da.0 ( 𝜑 → 0 ∈ 𝑁 )
6 relfld ( Rel 𝑅 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) )
7 4 6 syl ( 𝜑 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) )
8 7 reseq2d ( 𝜑 → ( I ↾ 𝑅 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
9 1 2 3 5 fvmptiunrelexplb0d ( 𝜑 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( 𝐶𝑅 ) )
10 8 9 eqsstrd ( 𝜑 → ( I ↾ 𝑅 ) ⊆ ( 𝐶𝑅 ) )