Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fvmptiunrelexplb0da.c | ⊢ 𝐶 = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) ) | |
fvmptiunrelexplb0da.r | ⊢ ( 𝜑 → 𝑅 ∈ V ) | ||
fvmptiunrelexplb0da.n | ⊢ ( 𝜑 → 𝑁 ∈ V ) | ||
fvmptiunrelexplb0da.rel | ⊢ ( 𝜑 → Rel 𝑅 ) | ||
fvmptiunrelexplb0da.0 | ⊢ ( 𝜑 → 0 ∈ 𝑁 ) | ||
Assertion | fvmptiunrelexplb0da | ⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( 𝐶 ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptiunrelexplb0da.c | ⊢ 𝐶 = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) ) | |
2 | fvmptiunrelexplb0da.r | ⊢ ( 𝜑 → 𝑅 ∈ V ) | |
3 | fvmptiunrelexplb0da.n | ⊢ ( 𝜑 → 𝑁 ∈ V ) | |
4 | fvmptiunrelexplb0da.rel | ⊢ ( 𝜑 → Rel 𝑅 ) | |
5 | fvmptiunrelexplb0da.0 | ⊢ ( 𝜑 → 0 ∈ 𝑁 ) | |
6 | relfld | ⊢ ( Rel 𝑅 → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) | |
7 | 4 6 | syl | ⊢ ( 𝜑 → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
8 | 7 | reseq2d | ⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
9 | 1 2 3 5 | fvmptiunrelexplb0d | ⊢ ( 𝜑 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( 𝐶 ‘ 𝑅 ) ) |
10 | 8 9 | eqsstrd | ⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( 𝐶 ‘ 𝑅 ) ) |