| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptiunrelexplb0da.c |
⊢ 𝐶 = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) ) |
| 2 |
|
fvmptiunrelexplb0da.r |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 3 |
|
fvmptiunrelexplb0da.n |
⊢ ( 𝜑 → 𝑁 ∈ V ) |
| 4 |
|
fvmptiunrelexplb0da.rel |
⊢ ( 𝜑 → Rel 𝑅 ) |
| 5 |
|
fvmptiunrelexplb0da.0 |
⊢ ( 𝜑 → 0 ∈ 𝑁 ) |
| 6 |
|
relfld |
⊢ ( Rel 𝑅 → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → ∪ ∪ 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 8 |
7
|
reseq2d |
⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) = ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 9 |
1 2 3 5
|
fvmptiunrelexplb0d |
⊢ ( 𝜑 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( 𝐶 ‘ 𝑅 ) ) |
| 10 |
8 9
|
eqsstrd |
⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( 𝐶 ‘ 𝑅 ) ) |