| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-nel | 
							 |-  ( M e/ ZZ <-> -. M e. ZZ )  | 
						
						
							| 2 | 
							
								
							 | 
							df-nel | 
							 |-  ( N e/ ZZ <-> -. N e. ZZ )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							orbi12i | 
							 |-  ( ( M e/ ZZ \/ N e/ ZZ ) <-> ( -. M e. ZZ \/ -. N e. ZZ ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ianor | 
							 |-  ( -. ( M e. ZZ /\ N e. ZZ ) <-> ( -. M e. ZZ \/ -. N e. ZZ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fzf | 
							 |-  ... : ( ZZ X. ZZ ) --> ~P ZZ  | 
						
						
							| 6 | 
							
								5
							 | 
							fdmi | 
							 |-  dom ... = ( ZZ X. ZZ )  | 
						
						
							| 7 | 
							
								6
							 | 
							ndmov | 
							 |-  ( -. ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = (/) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							sylbir | 
							 |-  ( ( -. M e. ZZ \/ -. N e. ZZ ) -> ( M ... N ) = (/) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							sylbi | 
							 |-  ( ( M e/ ZZ \/ N e/ ZZ ) -> ( M ... N ) = (/) )  |