Metamath Proof Explorer


Theorem fz0dif1

Description: Split the first element of a finite set of sequential nonnegative integers. (Contributed by AV, 12-Sep-2025)

Ref Expression
Assertion fz0dif1
|- ( N e. NN0 -> ( ( 0 ... N ) \ { 0 } ) = ( 1 ... N ) )

Proof

Step Hyp Ref Expression
1 elnn0uz
 |-  ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) )
2 fzdif1
 |-  ( N e. ( ZZ>= ` 0 ) -> ( ( 0 ... N ) \ { 0 } ) = ( ( 0 + 1 ) ... N ) )
3 1 2 sylbi
 |-  ( N e. NN0 -> ( ( 0 ... N ) \ { 0 } ) = ( ( 0 + 1 ) ... N ) )
4 0p1e1
 |-  ( 0 + 1 ) = 1
5 4 oveq1i
 |-  ( ( 0 + 1 ) ... N ) = ( 1 ... N )
6 3 5 eqtrdi
 |-  ( N e. NN0 -> ( ( 0 ... N ) \ { 0 } ) = ( 1 ... N ) )