Metamath Proof Explorer


Theorem fz0dif1

Description: Split the first element of a finite set of sequential nonnegative integers. (Contributed by AV, 12-Sep-2025)

Ref Expression
Assertion fz0dif1 ( 𝑁 ∈ ℕ0 → ( ( 0 ... 𝑁 ) ∖ { 0 } ) = ( 1 ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elnn0uz ( 𝑁 ∈ ℕ0𝑁 ∈ ( ℤ ‘ 0 ) )
2 fzdif1 ( 𝑁 ∈ ( ℤ ‘ 0 ) → ( ( 0 ... 𝑁 ) ∖ { 0 } ) = ( ( 0 + 1 ) ... 𝑁 ) )
3 1 2 sylbi ( 𝑁 ∈ ℕ0 → ( ( 0 ... 𝑁 ) ∖ { 0 } ) = ( ( 0 + 1 ) ... 𝑁 ) )
4 0p1e1 ( 0 + 1 ) = 1
5 4 oveq1i ( ( 0 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 )
6 3 5 eqtrdi ( 𝑁 ∈ ℕ0 → ( ( 0 ... 𝑁 ) ∖ { 0 } ) = ( 1 ... 𝑁 ) )