| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn0 |
|- 1 e. NN0 |
| 2 |
1
|
a1i |
|- ( N e. NN -> 1 e. NN0 ) |
| 3 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 4 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
| 5 |
|
elfz2nn0 |
|- ( 1 e. ( 0 ... N ) <-> ( 1 e. NN0 /\ N e. NN0 /\ 1 <_ N ) ) |
| 6 |
2 3 4 5
|
syl3anbrc |
|- ( N e. NN -> 1 e. ( 0 ... N ) ) |
| 7 |
|
fzosplit |
|- ( 1 e. ( 0 ... N ) -> ( 0 ..^ N ) = ( ( 0 ..^ 1 ) u. ( 1 ..^ N ) ) ) |
| 8 |
6 7
|
syl |
|- ( N e. NN -> ( 0 ..^ N ) = ( ( 0 ..^ 1 ) u. ( 1 ..^ N ) ) ) |
| 9 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
| 10 |
9
|
a1i |
|- ( N e. NN -> ( 0 ..^ 1 ) = { 0 } ) |
| 11 |
10
|
uneq1d |
|- ( N e. NN -> ( ( 0 ..^ 1 ) u. ( 1 ..^ N ) ) = ( { 0 } u. ( 1 ..^ N ) ) ) |
| 12 |
8 11
|
eqtrd |
|- ( N e. NN -> ( 0 ..^ N ) = ( { 0 } u. ( 1 ..^ N ) ) ) |