| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 2 | 1 | a1i |  |-  ( N e. NN -> 1 e. NN0 ) | 
						
							| 3 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 4 |  | nnge1 |  |-  ( N e. NN -> 1 <_ N ) | 
						
							| 5 |  | elfz2nn0 |  |-  ( 1 e. ( 0 ... N ) <-> ( 1 e. NN0 /\ N e. NN0 /\ 1 <_ N ) ) | 
						
							| 6 | 2 3 4 5 | syl3anbrc |  |-  ( N e. NN -> 1 e. ( 0 ... N ) ) | 
						
							| 7 |  | fzosplit |  |-  ( 1 e. ( 0 ... N ) -> ( 0 ..^ N ) = ( ( 0 ..^ 1 ) u. ( 1 ..^ N ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( N e. NN -> ( 0 ..^ N ) = ( ( 0 ..^ 1 ) u. ( 1 ..^ N ) ) ) | 
						
							| 9 |  | fzo01 |  |-  ( 0 ..^ 1 ) = { 0 } | 
						
							| 10 | 9 | a1i |  |-  ( N e. NN -> ( 0 ..^ 1 ) = { 0 } ) | 
						
							| 11 | 10 | uneq1d |  |-  ( N e. NN -> ( ( 0 ..^ 1 ) u. ( 1 ..^ N ) ) = ( { 0 } u. ( 1 ..^ N ) ) ) | 
						
							| 12 | 8 11 | eqtrd |  |-  ( N e. NN -> ( 0 ..^ N ) = ( { 0 } u. ( 1 ..^ N ) ) ) |