Metamath Proof Explorer


Theorem fzo0sn0fzo1

Description: A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018)

Ref Expression
Assertion fzo0sn0fzo1 N0..^N=01..^N

Proof

Step Hyp Ref Expression
1 1nn0 10
2 1 a1i N10
3 nnnn0 NN0
4 nnge1 N1N
5 elfz2nn0 10N10N01N
6 2 3 4 5 syl3anbrc N10N
7 fzosplit 10N0..^N=0..^11..^N
8 6 7 syl N0..^N=0..^11..^N
9 fzo01 0..^1=0
10 9 a1i N0..^1=0
11 10 uneq1d N0..^11..^N=01..^N
12 8 11 eqtrd N0..^N=01..^N