Description: The Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gamf | |- _G : ( CC \ ( ZZ \ NN ) ) --> CC | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eff | |- exp : CC --> CC | |
| 2 | lgamf | |- log_G : ( CC \ ( ZZ \ NN ) ) --> CC | |
| 3 | fco | |- ( ( exp : CC --> CC /\ log_G : ( CC \ ( ZZ \ NN ) ) --> CC ) -> ( exp o. log_G ) : ( CC \ ( ZZ \ NN ) ) --> CC ) | |
| 4 | 1 2 3 | mp2an | |- ( exp o. log_G ) : ( CC \ ( ZZ \ NN ) ) --> CC | 
| 5 | df-gam | |- _G = ( exp o. log_G ) | |
| 6 | 5 | feq1i | |- ( _G : ( CC \ ( ZZ \ NN ) ) --> CC <-> ( exp o. log_G ) : ( CC \ ( ZZ \ NN ) ) --> CC ) | 
| 7 | 4 6 | mpbir | |- _G : ( CC \ ( ZZ \ NN ) ) --> CC |