Metamath Proof Explorer


Theorem gamf

Description: The Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Assertion gamf
|- _G : ( CC \ ( ZZ \ NN ) ) --> CC

Proof

Step Hyp Ref Expression
1 eff
 |-  exp : CC --> CC
2 lgamf
 |-  log_G : ( CC \ ( ZZ \ NN ) ) --> CC
3 fco
 |-  ( ( exp : CC --> CC /\ log_G : ( CC \ ( ZZ \ NN ) ) --> CC ) -> ( exp o. log_G ) : ( CC \ ( ZZ \ NN ) ) --> CC )
4 1 2 3 mp2an
 |-  ( exp o. log_G ) : ( CC \ ( ZZ \ NN ) ) --> CC
5 df-gam
 |-  _G = ( exp o. log_G )
6 5 feq1i
 |-  ( _G : ( CC \ ( ZZ \ NN ) ) --> CC <-> ( exp o. log_G ) : ( CC \ ( ZZ \ NN ) ) --> CC )
7 4 6 mpbir
 |-  _G : ( CC \ ( ZZ \ NN ) ) --> CC