| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovexd |  |-  ( ( T. /\ x e. ( CC \ ( ZZ \ NN ) ) ) -> ( sum_ n e. NN ( ( x x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( x / n ) + 1 ) ) ) - ( log ` x ) ) e. _V ) | 
						
							| 2 |  | df-lgam |  |-  log_G = ( x e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ n e. NN ( ( x x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( x / n ) + 1 ) ) ) - ( log ` x ) ) ) | 
						
							| 3 | 2 | a1i |  |-  ( T. -> log_G = ( x e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ n e. NN ( ( x x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( x / n ) + 1 ) ) ) - ( log ` x ) ) ) ) | 
						
							| 4 |  | lgamcl |  |-  ( x e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` x ) e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( T. /\ x e. ( CC \ ( ZZ \ NN ) ) ) -> ( log_G ` x ) e. CC ) | 
						
							| 6 | 1 3 5 | fmpt2d |  |-  ( T. -> log_G : ( CC \ ( ZZ \ NN ) ) --> CC ) | 
						
							| 7 | 6 | mptru |  |-  log_G : ( CC \ ( ZZ \ NN ) ) --> CC |