Metamath Proof Explorer


Theorem lgamf

Description: The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Assertion lgamf
|- log_G : ( CC \ ( ZZ \ NN ) ) --> CC

Proof

Step Hyp Ref Expression
1 ovexd
 |-  ( ( T. /\ x e. ( CC \ ( ZZ \ NN ) ) ) -> ( sum_ n e. NN ( ( x x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( x / n ) + 1 ) ) ) - ( log ` x ) ) e. _V )
2 df-lgam
 |-  log_G = ( x e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ n e. NN ( ( x x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( x / n ) + 1 ) ) ) - ( log ` x ) ) )
3 2 a1i
 |-  ( T. -> log_G = ( x e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ n e. NN ( ( x x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( x / n ) + 1 ) ) ) - ( log ` x ) ) ) )
4 lgamcl
 |-  ( x e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` x ) e. CC )
5 4 adantl
 |-  ( ( T. /\ x e. ( CC \ ( ZZ \ NN ) ) ) -> ( log_G ` x ) e. CC )
6 1 3 5 fmpt2d
 |-  ( T. -> log_G : ( CC \ ( ZZ \ NN ) ) --> CC )
7 6 mptru
 |-  log_G : ( CC \ ( ZZ \ NN ) ) --> CC