Step |
Hyp |
Ref |
Expression |
1 |
|
ovexd |
|- ( ( T. /\ x e. ( CC \ ( ZZ \ NN ) ) ) -> ( sum_ n e. NN ( ( x x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( x / n ) + 1 ) ) ) - ( log ` x ) ) e. _V ) |
2 |
|
df-lgam |
|- log_G = ( x e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ n e. NN ( ( x x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( x / n ) + 1 ) ) ) - ( log ` x ) ) ) |
3 |
2
|
a1i |
|- ( T. -> log_G = ( x e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ n e. NN ( ( x x. ( log ` ( ( n + 1 ) / n ) ) ) - ( log ` ( ( x / n ) + 1 ) ) ) - ( log ` x ) ) ) ) |
4 |
|
lgamcl |
|- ( x e. ( CC \ ( ZZ \ NN ) ) -> ( log_G ` x ) e. CC ) |
5 |
4
|
adantl |
|- ( ( T. /\ x e. ( CC \ ( ZZ \ NN ) ) ) -> ( log_G ` x ) e. CC ) |
6 |
1 3 5
|
fmpt2d |
|- ( T. -> log_G : ( CC \ ( ZZ \ NN ) ) --> CC ) |
7 |
6
|
mptru |
|- log_G : ( CC \ ( ZZ \ NN ) ) --> CC |