Step |
Hyp |
Ref |
Expression |
1 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) → ( Σ 𝑛 ∈ ℕ ( ( 𝑥 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑥 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑥 ) ) ∈ V ) |
2 |
|
df-lgam |
⊢ log Γ = ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑛 ∈ ℕ ( ( 𝑥 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑥 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑥 ) ) ) |
3 |
2
|
a1i |
⊢ ( ⊤ → log Γ = ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑛 ∈ ℕ ( ( 𝑥 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑥 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑥 ) ) ) ) |
4 |
|
lgamcl |
⊢ ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝑥 ) ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) → ( log Γ ‘ 𝑥 ) ∈ ℂ ) |
6 |
1 3 5
|
fmpt2d |
⊢ ( ⊤ → log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ ) |
7 |
6
|
mptru |
⊢ log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ |