Metamath Proof Explorer


Theorem lgamf

Description: The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Assertion lgamf log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ

Proof

Step Hyp Ref Expression
1 ovexd ( ( ⊤ ∧ 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) → ( Σ 𝑛 ∈ ℕ ( ( 𝑥 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑥 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑥 ) ) ∈ V )
2 df-lgam log Γ = ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑛 ∈ ℕ ( ( 𝑥 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑥 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑥 ) ) )
3 2 a1i ( ⊤ → log Γ = ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑛 ∈ ℕ ( ( 𝑥 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑥 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑥 ) ) ) )
4 lgamcl ( 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝑥 ) ∈ ℂ )
5 4 adantl ( ( ⊤ ∧ 𝑥 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) → ( log Γ ‘ 𝑥 ) ∈ ℂ )
6 1 3 5 fmpt2d ( ⊤ → log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ )
7 6 mptru log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ