| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) )  →  ( Σ 𝑛  ∈  ℕ ( ( 𝑥  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑥  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑥 ) )  ∈  V ) | 
						
							| 2 |  | df-lgam | ⊢ log Γ  =  ( 𝑥  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↦  ( Σ 𝑛  ∈  ℕ ( ( 𝑥  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑥  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑥 ) ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( ⊤  →  log Γ  =  ( 𝑥  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↦  ( Σ 𝑛  ∈  ℕ ( ( 𝑥  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑥  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 4 |  | lgamcl | ⊢ ( 𝑥  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( log Γ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) )  →  ( log Γ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 6 | 1 3 5 | fmpt2d | ⊢ ( ⊤  →  log Γ : ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ⟶ ℂ ) | 
						
							| 7 | 6 | mptru | ⊢ log Γ : ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ⟶ ℂ |