Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑟 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑟 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑟 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑟 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } |
2 |
|
id |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
3 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) |
4 |
1 2 3
|
lgamcvglem |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( ( log Γ ‘ 𝐴 ) ∈ ℂ ∧ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝐴 / 𝑛 ) + 1 ) ) ) ) ) ⇝ ( ( log Γ ‘ 𝐴 ) + ( log ‘ 𝐴 ) ) ) ) |
5 |
4
|
simpld |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ( log Γ ‘ 𝐴 ) ∈ ℂ ) |