| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑟  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) }  =  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑟  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) } | 
						
							| 2 |  | id | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 4 | 1 2 3 | lgamcvglem | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( ( log Γ ‘ 𝐴 )  ∈  ℂ  ∧  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑛 )  +  1 ) ) ) ) )  ⇝  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 5 | 4 | simpld | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ( log Γ ‘ 𝐴 )  ∈  ℂ ) |