| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamucov.u | ⊢ 𝑈  =  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑟  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) } | 
						
							| 2 |  | lgamucov.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 3 |  | lgamcvglem.g | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 4 | 1 2 | lgamucov2 | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ℕ 𝐴  ∈  𝑈 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑧  =  𝐴  →  ( log Γ ‘ 𝑧 )  =  ( log Γ ‘ 𝐴 ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝑧  =  𝐴  →  ( ( log Γ ‘ 𝑧 )  ∈  ℂ  ↔  ( log Γ ‘ 𝐴 )  ∈  ℂ ) ) | 
						
							| 7 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  𝑟  ∈  ℕ ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 𝑡 ) ) | 
						
							| 9 | 8 | breq1d | ⊢ ( 𝑥  =  𝑡  →  ( ( abs ‘ 𝑥 )  ≤  𝑟  ↔  ( abs ‘ 𝑡 )  ≤  𝑟 ) ) | 
						
							| 10 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑡  →  ( abs ‘ ( 𝑥  +  𝑘 ) )  =  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑥  =  𝑡  →  ( ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) )  ↔  ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) ) | 
						
							| 12 | 11 | ralbidv | ⊢ ( 𝑥  =  𝑡  →  ( ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) )  ↔  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) ) | 
						
							| 13 | 9 12 | anbi12d | ⊢ ( 𝑥  =  𝑡  →  ( ( ( abs ‘ 𝑥 )  ≤  𝑟  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) )  ↔  ( ( abs ‘ 𝑡 )  ≤  𝑟  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) ) ) | 
						
							| 14 | 13 | cbvrabv | ⊢ { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑟  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) }  =  { 𝑡  ∈  ℂ  ∣  ( ( abs ‘ 𝑡 )  ≤  𝑟  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) } | 
						
							| 15 | 1 14 | eqtri | ⊢ 𝑈  =  { 𝑡  ∈  ℂ  ∣  ( ( abs ‘ 𝑡 )  ≤  𝑟  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑟 )  ≤  ( abs ‘ ( 𝑡  +  𝑘 ) ) ) } | 
						
							| 16 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) | 
						
							| 17 | 7 15 16 | lgamgulm2 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  ( ∀ 𝑧  ∈  𝑈 ( log Γ ‘ 𝑧 )  ∈  ℂ  ∧  seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  ∀ 𝑧  ∈  𝑈 ( log Γ ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 19 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  𝐴  ∈  𝑈 ) | 
						
							| 20 | 6 18 19 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  ( log Γ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 21 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 22 |  | 1zzd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  1  ∈  ℤ ) | 
						
							| 23 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 24 |  | seqfn | ⊢ ( 1  ∈  ℤ  →  seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 25 | 23 24 | ax-mp | ⊢ seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) )  Fn  ( ℤ≥ ‘ 1 ) | 
						
							| 26 | 21 | fneq2i | ⊢ ( seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) )  Fn  ℕ  ↔  seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 27 | 25 26 | mpbir | ⊢ seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) )  Fn  ℕ | 
						
							| 28 | 17 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) | 
						
							| 29 |  | ulmf2 | ⊢ ( ( seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) )  Fn  ℕ  ∧  seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) )  →  seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) : ℕ ⟶ ( ℂ  ↑m  𝑈 ) ) | 
						
							| 30 | 27 28 29 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) : ℕ ⟶ ( ℂ  ↑m  𝑈 ) ) | 
						
							| 31 |  | seqex | ⊢ seq 1 (  +  ,  𝐺 )  ∈  V | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  seq 1 (  +  ,  𝐺 )  ∈  V ) | 
						
							| 33 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 34 | 1 33 | rabex2 | ⊢ 𝑈  ∈  V | 
						
							| 35 | 34 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  →  𝑈  ∈  V ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 37 | 36 21 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 38 |  | fz1ssnn | ⊢ ( 1 ... 𝑛 )  ⊆  ℕ | 
						
							| 39 | 38 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  →  ( 1 ... 𝑛 )  ⊆  ℕ ) | 
						
							| 40 |  | ovexd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑧  ∈  𝑈 ) )  →  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) )  ∈  V ) | 
						
							| 41 | 35 37 39 40 | seqof2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) ‘ 𝑛 )  =  ( 𝑧  ∈  𝑈  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 42 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑧  =  𝐴 )  ∧  𝑚  ∈  ℕ )  →  𝑧  =  𝐴 ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑧  =  𝐴 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  =  ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) ) ) | 
						
							| 44 | 42 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑧  =  𝐴 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑧  /  𝑚 )  =  ( 𝐴  /  𝑚 ) ) | 
						
							| 45 | 44 | fvoveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑧  =  𝐴 )  ∧  𝑚  ∈  ℕ )  →  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) )  =  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) | 
						
							| 46 | 43 45 | oveq12d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑧  =  𝐴 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) )  =  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 47 | 46 | mpteq2dva | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑧  =  𝐴 )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝐴  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝐴  /  𝑚 )  +  1 ) ) ) ) ) | 
						
							| 48 | 47 3 | eqtr4di | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑧  =  𝐴 )  →  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) )  =  𝐺 ) | 
						
							| 49 | 48 | seqeq3d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑧  =  𝐴 )  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) )  =  seq 1 (  +  ,  𝐺 ) ) | 
						
							| 50 | 49 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑧  =  𝐴 )  →  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 )  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 51 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  𝑈 ) | 
						
							| 52 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑛 )  ∈  V ) | 
						
							| 53 | 41 50 51 52 | fvmptd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  ∧  𝑛  ∈  ℕ )  →  ( ( seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) ‘ 𝑛 ) ‘ 𝐴 )  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 54 | 21 22 30 19 32 53 28 | ulmclm | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  seq 1 (  +  ,  𝐺 )  ⇝  ( ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ‘ 𝐴 ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑧  =  𝐴  →  ( log ‘ 𝑧 )  =  ( log ‘ 𝐴 ) ) | 
						
							| 56 | 5 55 | oveq12d | ⊢ ( 𝑧  =  𝐴  →  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) )  =  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) | 
						
							| 57 |  | eqid | ⊢ ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) | 
						
							| 58 |  | ovex | ⊢ ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) )  ∈  V | 
						
							| 59 | 56 57 58 | fvmpt | ⊢ ( 𝐴  ∈  𝑈  →  ( ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ‘ 𝐴 )  =  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) | 
						
							| 60 | 19 59 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  ( ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ‘ 𝐴 )  =  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) | 
						
							| 61 | 54 60 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  seq 1 (  +  ,  𝐺 )  ⇝  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) | 
						
							| 62 | 20 61 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  ℕ  ∧  𝐴  ∈  𝑈 ) )  →  ( ( log Γ ‘ 𝐴 )  ∈  ℂ  ∧  seq 1 (  +  ,  𝐺 )  ⇝  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 63 | 4 62 | rexlimddv | ⊢ ( 𝜑  →  ( ( log Γ ‘ 𝐴 )  ∈  ℂ  ∧  seq 1 (  +  ,  𝐺 )  ⇝  ( ( log Γ ‘ 𝐴 )  +  ( log ‘ 𝐴 ) ) ) ) |