Step |
Hyp |
Ref |
Expression |
1 |
|
lgamgulm.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
2 |
|
lgamgulm.u |
⊢ 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } |
3 |
|
lgamgulm.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) |
4 |
1 2
|
lgamgulmlem1 |
⊢ ( 𝜑 → 𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
5 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
6 |
|
ovex |
⊢ ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ∈ V |
7 |
|
df-lgam |
⊢ log Γ = ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ) |
8 |
7
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ∈ V ) → ( log Γ ‘ 𝑧 ) = ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ) |
9 |
5 6 8
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → ( log Γ ‘ 𝑧 ) = ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ) |
10 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
11 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → 1 ∈ ℤ ) |
12 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) ) |
13 |
|
id |
⊢ ( 𝑚 = 𝑛 → 𝑚 = 𝑛 ) |
14 |
12 13
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑛 + 1 ) / 𝑛 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 / 𝑚 ) = ( 𝑧 / 𝑛 ) ) |
18 |
17
|
fvoveq1d |
⊢ ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) = ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) |
19 |
16 18
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) = ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) |
20 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) |
21 |
|
ovex |
⊢ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ∈ V |
22 |
19 20 21
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ‘ 𝑛 ) = ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ‘ 𝑛 ) = ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) |
24 |
5
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ ℂ ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑧 ∈ ℂ ) |
26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
27 |
26
|
peano2nnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
28 |
27
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℝ+ ) |
29 |
26
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ+ ) |
30 |
28 29
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) / 𝑛 ) ∈ ℝ+ ) |
31 |
30
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℝ ) |
32 |
31
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℂ ) |
33 |
25 32
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ∈ ℂ ) |
34 |
26
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
35 |
26
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
36 |
25 34 35
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑧 / 𝑛 ) ∈ ℂ ) |
37 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ ) |
38 |
36 37
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑧 / 𝑛 ) + 1 ) ∈ ℂ ) |
39 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
40 |
39 26
|
dmgmdivn0 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑧 / 𝑛 ) + 1 ) ≠ 0 ) |
41 |
38 40
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ∈ ℂ ) |
42 |
33 41
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
43 |
|
1z |
⊢ 1 ∈ ℤ |
44 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( ∘f + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ) |
45 |
43 44
|
ax-mp |
⊢ seq 1 ( ∘f + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) |
46 |
10
|
fneq2i |
⊢ ( seq 1 ( ∘f + , 𝐺 ) Fn ℕ ↔ seq 1 ( ∘f + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ) |
47 |
45 46
|
mpbir |
⊢ seq 1 ( ∘f + , 𝐺 ) Fn ℕ |
48 |
1 2 3
|
lgamgulm |
⊢ ( 𝜑 → seq 1 ( ∘f + , 𝐺 ) ∈ dom ( ⇝𝑢 ‘ 𝑈 ) ) |
49 |
|
ulmdm |
⊢ ( seq 1 ( ∘f + , 𝐺 ) ∈ dom ( ⇝𝑢 ‘ 𝑈 ) ↔ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ) |
50 |
48 49
|
sylib |
⊢ ( 𝜑 → seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ) |
51 |
|
ulmf2 |
⊢ ( ( seq 1 ( ∘f + , 𝐺 ) Fn ℕ ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ) → seq 1 ( ∘f + , 𝐺 ) : ℕ ⟶ ( ℂ ↑m 𝑈 ) ) |
52 |
47 50 51
|
sylancr |
⊢ ( 𝜑 → seq 1 ( ∘f + , 𝐺 ) : ℕ ⟶ ( ℂ ↑m 𝑈 ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → seq 1 ( ∘f + , 𝐺 ) : ℕ ⟶ ( ℂ ↑m 𝑈 ) ) |
54 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ 𝑈 ) |
55 |
|
seqex |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ∈ V |
56 |
55
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ∈ V ) |
57 |
3
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ) |
58 |
57
|
seqeq3d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → seq 1 ( ∘f + , 𝐺 ) = seq 1 ( ∘f + , ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ) ) |
59 |
58
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( ∘f + , 𝐺 ) ‘ 𝑛 ) = ( seq 1 ( ∘f + , ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ) ‘ 𝑛 ) ) |
60 |
|
cnex |
⊢ ℂ ∈ V |
61 |
2 60
|
rabex2 |
⊢ 𝑈 ∈ V |
62 |
61
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑈 ∈ V ) |
63 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
64 |
63 10
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
65 |
|
fz1ssnn |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
66 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ ) |
67 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ∈ V ) |
68 |
62 64 66 67
|
seqof2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( ∘f + , ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) ) |
69 |
68
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( ∘f + , ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) ) |
70 |
59 69
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( ∘f + , 𝐺 ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) ) |
71 |
70
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( seq 1 ( ∘f + , 𝐺 ) ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ 𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) ) |
72 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑧 ∈ 𝑈 ) |
73 |
|
fvex |
⊢ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ∈ V |
74 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) = ( 𝑧 ∈ 𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) |
75 |
74
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝑈 ∧ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ∈ V ) → ( ( 𝑧 ∈ 𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) |
76 |
72 73 75
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑧 ∈ 𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) |
77 |
71 76
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( seq 1 ( ∘f + , 𝐺 ) ‘ 𝑛 ) ‘ 𝑧 ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) |
78 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ) |
79 |
10 11 53 54 56 77 78
|
ulmclm |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ⇝ ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) ) |
80 |
10 11 23 42 79
|
isumclim |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) = ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) ) |
81 |
|
ulmcl |
⊢ ( seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) → ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) : 𝑈 ⟶ ℂ ) |
82 |
50 81
|
syl |
⊢ ( 𝜑 → ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) : 𝑈 ⟶ ℂ ) |
83 |
82
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) ∈ ℂ ) |
84 |
80 83
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
85 |
5
|
dmgmn0 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ≠ 0 ) |
86 |
24 85
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ 𝑧 ) ∈ ℂ ) |
87 |
84 86
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ∈ ℂ ) |
88 |
9 87
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → ( log Γ ‘ 𝑧 ) ∈ ℂ ) |
89 |
88
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑈 ( log Γ ‘ 𝑧 ) ∈ ℂ ) |
90 |
|
ffn |
⊢ ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) : 𝑈 ⟶ ℂ → ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) Fn 𝑈 ) |
91 |
50 81 90
|
3syl |
⊢ ( 𝜑 → ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) Fn 𝑈 ) |
92 |
|
nfcv |
⊢ Ⅎ 𝑧 ( ⇝𝑢 ‘ 𝑈 ) |
93 |
|
nfcv |
⊢ Ⅎ 𝑧 1 |
94 |
|
nfcv |
⊢ Ⅎ 𝑧 ∘f + |
95 |
|
nfcv |
⊢ Ⅎ 𝑧 ℕ |
96 |
|
nfmpt1 |
⊢ Ⅎ 𝑧 ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) |
97 |
95 96
|
nfmpt |
⊢ Ⅎ 𝑧 ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) |
98 |
3 97
|
nfcxfr |
⊢ Ⅎ 𝑧 𝐺 |
99 |
93 94 98
|
nfseq |
⊢ Ⅎ 𝑧 seq 1 ( ∘f + , 𝐺 ) |
100 |
92 99
|
nffv |
⊢ Ⅎ 𝑧 ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) |
101 |
100
|
dffn5f |
⊢ ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) Fn 𝑈 ↔ ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) = ( 𝑧 ∈ 𝑈 ↦ ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) ) ) |
102 |
91 101
|
sylib |
⊢ ( 𝜑 → ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) = ( 𝑧 ∈ 𝑈 ↦ ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) ) ) |
103 |
9
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) = ( ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) + ( log ‘ 𝑧 ) ) ) |
104 |
84 86
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → ( ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) + ( log ‘ 𝑧 ) ) = Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ) |
105 |
103 104 80
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑈 ) → ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) = ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) |
106 |
105
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑈 ↦ ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) |
107 |
102 106
|
eqtrd |
⊢ ( 𝜑 → ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) = ( 𝑧 ∈ 𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) |
108 |
50 107
|
breqtrd |
⊢ ( 𝜑 → seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) |
109 |
89 108
|
jca |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑈 ( log Γ ‘ 𝑧 ) ∈ ℂ ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ) |