Metamath Proof Explorer


Theorem lgamgulm2

Description: Rewrite the limit of the sequence G in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r ( 𝜑𝑅 ∈ ℕ )
lgamgulm.u 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) }
lgamgulm.g 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑧𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) )
Assertion lgamgulm2 ( 𝜑 → ( ∀ 𝑧𝑈 ( log Γ ‘ 𝑧 ) ∈ ℂ ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢𝑈 ) ( 𝑧𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 lgamgulm.r ( 𝜑𝑅 ∈ ℕ )
2 lgamgulm.u 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) }
3 lgamgulm.g 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑧𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) )
4 1 2 lgamgulmlem1 ( 𝜑𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
5 4 sselda ( ( 𝜑𝑧𝑈 ) → 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
6 ovex ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ∈ V
7 df-lgam log Γ = ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) )
8 7 fvmpt2 ( ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ∈ V ) → ( log Γ ‘ 𝑧 ) = ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) )
9 5 6 8 sylancl ( ( 𝜑𝑧𝑈 ) → ( log Γ ‘ 𝑧 ) = ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) )
10 nnuz ℕ = ( ℤ ‘ 1 )
11 1zzd ( ( 𝜑𝑧𝑈 ) → 1 ∈ ℤ )
12 oveq1 ( 𝑚 = 𝑛 → ( 𝑚 + 1 ) = ( 𝑛 + 1 ) )
13 id ( 𝑚 = 𝑛𝑚 = 𝑛 )
14 12 13 oveq12d ( 𝑚 = 𝑛 → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑛 + 1 ) / 𝑛 ) )
15 14 fveq2d ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) )
16 15 oveq2d ( 𝑚 = 𝑛 → ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) = ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) )
17 oveq2 ( 𝑚 = 𝑛 → ( 𝑧 / 𝑚 ) = ( 𝑧 / 𝑛 ) )
18 17 fvoveq1d ( 𝑚 = 𝑛 → ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) = ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) )
19 16 18 oveq12d ( 𝑚 = 𝑛 → ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) = ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) )
20 eqid ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) )
21 ovex ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ∈ V
22 19 20 21 fvmpt ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ‘ 𝑛 ) = ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) )
23 22 adantl ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ‘ 𝑛 ) = ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) )
24 5 eldifad ( ( 𝜑𝑧𝑈 ) → 𝑧 ∈ ℂ )
25 24 adantr ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑧 ∈ ℂ )
26 simpr ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ )
27 26 peano2nnd ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ )
28 27 nnrpd ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℝ+ )
29 26 nnrpd ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ+ )
30 28 29 rpdivcld ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 + 1 ) / 𝑛 ) ∈ ℝ+ )
31 30 relogcld ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℝ )
32 31 recnd ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ∈ ℂ )
33 25 32 mulcld ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) ∈ ℂ )
34 26 nncnd ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ )
35 26 nnne0d ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 )
36 25 34 35 divcld ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑧 / 𝑛 ) ∈ ℂ )
37 1cnd ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℂ )
38 36 37 addcld ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑧 / 𝑛 ) + 1 ) ∈ ℂ )
39 5 adantr ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
40 39 26 dmgmdivn0 ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑧 / 𝑛 ) + 1 ) ≠ 0 )
41 38 40 logcld ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ∈ ℂ )
42 33 41 subcld ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ∈ ℂ )
43 1z 1 ∈ ℤ
44 seqfn ( 1 ∈ ℤ → seq 1 ( ∘f + , 𝐺 ) Fn ( ℤ ‘ 1 ) )
45 43 44 ax-mp seq 1 ( ∘f + , 𝐺 ) Fn ( ℤ ‘ 1 )
46 10 fneq2i ( seq 1 ( ∘f + , 𝐺 ) Fn ℕ ↔ seq 1 ( ∘f + , 𝐺 ) Fn ( ℤ ‘ 1 ) )
47 45 46 mpbir seq 1 ( ∘f + , 𝐺 ) Fn ℕ
48 1 2 3 lgamgulm ( 𝜑 → seq 1 ( ∘f + , 𝐺 ) ∈ dom ( ⇝𝑢𝑈 ) )
49 ulmdm ( seq 1 ( ∘f + , 𝐺 ) ∈ dom ( ⇝𝑢𝑈 ) ↔ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢𝑈 ) ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) )
50 48 49 sylib ( 𝜑 → seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢𝑈 ) ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) )
51 ulmf2 ( ( seq 1 ( ∘f + , 𝐺 ) Fn ℕ ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢𝑈 ) ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ) → seq 1 ( ∘f + , 𝐺 ) : ℕ ⟶ ( ℂ ↑m 𝑈 ) )
52 47 50 51 sylancr ( 𝜑 → seq 1 ( ∘f + , 𝐺 ) : ℕ ⟶ ( ℂ ↑m 𝑈 ) )
53 52 adantr ( ( 𝜑𝑧𝑈 ) → seq 1 ( ∘f + , 𝐺 ) : ℕ ⟶ ( ℂ ↑m 𝑈 ) )
54 simpr ( ( 𝜑𝑧𝑈 ) → 𝑧𝑈 )
55 seqex seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ∈ V
56 55 a1i ( ( 𝜑𝑧𝑈 ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ∈ V )
57 3 a1i ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑧𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) )
58 57 seqeq3d ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → seq 1 ( ∘f + , 𝐺 ) = seq 1 ( ∘f + , ( 𝑚 ∈ ℕ ↦ ( 𝑧𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ) )
59 58 fveq1d ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( ∘f + , 𝐺 ) ‘ 𝑛 ) = ( seq 1 ( ∘f + , ( 𝑚 ∈ ℕ ↦ ( 𝑧𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ) ‘ 𝑛 ) )
60 cnex ℂ ∈ V
61 2 60 rabex2 𝑈 ∈ V
62 61 a1i ( ( 𝜑𝑛 ∈ ℕ ) → 𝑈 ∈ V )
63 simpr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ )
64 63 10 eleqtrdi ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ ‘ 1 ) )
65 fz1ssnn ( 1 ... 𝑛 ) ⊆ ℕ
66 65 a1i ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ )
67 ovexd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑧𝑈 ) ) → ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ∈ V )
68 62 64 66 67 seqof2 ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( ∘f + , ( 𝑚 ∈ ℕ ↦ ( 𝑧𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ) ‘ 𝑛 ) = ( 𝑧𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) )
69 68 adantlr ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( ∘f + , ( 𝑚 ∈ ℕ ↦ ( 𝑧𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ) ‘ 𝑛 ) = ( 𝑧𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) )
70 59 69 eqtrd ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( ∘f + , 𝐺 ) ‘ 𝑛 ) = ( 𝑧𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) )
71 70 fveq1d ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( seq 1 ( ∘f + , 𝐺 ) ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝑧𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) )
72 54 adantr ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → 𝑧𝑈 )
73 fvex ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ∈ V
74 eqid ( 𝑧𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) = ( 𝑧𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) )
75 74 fvmpt2 ( ( 𝑧𝑈 ∧ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ∈ V ) → ( ( 𝑧𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) )
76 72 73 75 sylancl ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑧𝑈 ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) )
77 71 76 eqtrd ( ( ( 𝜑𝑧𝑈 ) ∧ 𝑛 ∈ ℕ ) → ( ( seq 1 ( ∘f + , 𝐺 ) ‘ 𝑛 ) ‘ 𝑧 ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ‘ 𝑛 ) )
78 50 adantr ( ( 𝜑𝑧𝑈 ) → seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢𝑈 ) ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) )
79 10 11 53 54 56 77 78 ulmclm ( ( 𝜑𝑧𝑈 ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) ⇝ ( ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) )
80 10 11 23 42 79 isumclim ( ( 𝜑𝑧𝑈 ) → Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) = ( ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) )
81 ulmcl ( seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢𝑈 ) ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) → ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) : 𝑈 ⟶ ℂ )
82 50 81 syl ( 𝜑 → ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) : 𝑈 ⟶ ℂ )
83 82 ffvelrnda ( ( 𝜑𝑧𝑈 ) → ( ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) ∈ ℂ )
84 80 83 eqeltrd ( ( 𝜑𝑧𝑈 ) → Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) ∈ ℂ )
85 5 dmgmn0 ( ( 𝜑𝑧𝑈 ) → 𝑧 ≠ 0 )
86 24 85 logcld ( ( 𝜑𝑧𝑈 ) → ( log ‘ 𝑧 ) ∈ ℂ )
87 84 86 subcld ( ( 𝜑𝑧𝑈 ) → ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ∈ ℂ )
88 9 87 eqeltrd ( ( 𝜑𝑧𝑈 ) → ( log Γ ‘ 𝑧 ) ∈ ℂ )
89 88 ralrimiva ( 𝜑 → ∀ 𝑧𝑈 ( log Γ ‘ 𝑧 ) ∈ ℂ )
90 ffn ( ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) : 𝑈 ⟶ ℂ → ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) Fn 𝑈 )
91 50 81 90 3syl ( 𝜑 → ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) Fn 𝑈 )
92 nfcv 𝑧 ( ⇝𝑢𝑈 )
93 nfcv 𝑧 1
94 nfcv 𝑧f +
95 nfcv 𝑧
96 nfmpt1 𝑧 ( 𝑧𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) )
97 95 96 nfmpt 𝑧 ( 𝑚 ∈ ℕ ↦ ( 𝑧𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) )
98 3 97 nfcxfr 𝑧 𝐺
99 93 94 98 nfseq 𝑧 seq 1 ( ∘f + , 𝐺 )
100 92 99 nffv 𝑧 ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) )
101 100 dffn5f ( ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) Fn 𝑈 ↔ ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) = ( 𝑧𝑈 ↦ ( ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) ) )
102 91 101 sylib ( 𝜑 → ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) = ( 𝑧𝑈 ↦ ( ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) ) )
103 9 oveq1d ( ( 𝜑𝑧𝑈 ) → ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) = ( ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) + ( log ‘ 𝑧 ) ) )
104 84 86 npcand ( ( 𝜑𝑧𝑈 ) → ( ( Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) + ( log ‘ 𝑧 ) ) = Σ 𝑛 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑛 ) + 1 ) ) ) )
105 103 104 80 3eqtrrd ( ( 𝜑𝑧𝑈 ) → ( ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) = ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) )
106 105 mpteq2dva ( 𝜑 → ( 𝑧𝑈 ↦ ( ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) ‘ 𝑧 ) ) = ( 𝑧𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) )
107 102 106 eqtrd ( 𝜑 → ( ( ⇝𝑢𝑈 ) ‘ seq 1 ( ∘f + , 𝐺 ) ) = ( 𝑧𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) )
108 50 107 breqtrd ( 𝜑 → seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢𝑈 ) ( 𝑧𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) )
109 89 108 jca ( 𝜑 → ( ∀ 𝑧𝑈 ( log Γ ‘ 𝑧 ) ∈ ℂ ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢𝑈 ) ( 𝑧𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) )