| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamgulm.r | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 2 |  | lgamgulm.u | ⊢ 𝑈  =  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) } | 
						
							| 3 |  | lgamgulm.g | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) | 
						
							| 4 | 1 2 | lgamgulmlem1 | ⊢ ( 𝜑  →  𝑈  ⊆  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 5 | 4 | sselda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 6 |  | ovex | ⊢ ( Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) )  ∈  V | 
						
							| 7 |  | df-lgam | ⊢ log Γ  =  ( 𝑧  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↦  ( Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) ) ) | 
						
							| 8 | 7 | fvmpt2 | ⊢ ( ( 𝑧  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  ( Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) )  ∈  V )  →  ( log Γ ‘ 𝑧 )  =  ( Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) ) ) | 
						
							| 9 | 5 6 8 | sylancl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( log Γ ‘ 𝑧 )  =  ( Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) ) ) | 
						
							| 10 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 11 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  1  ∈  ℤ ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  +  1 )  =  ( 𝑛  +  1 ) ) | 
						
							| 13 |  | id | ⊢ ( 𝑚  =  𝑛  →  𝑚  =  𝑛 ) | 
						
							| 14 | 12 13 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  +  1 )  /  𝑚 )  =  ( ( 𝑛  +  1 )  /  𝑛 ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) )  =  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  =  ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑧  /  𝑚 )  =  ( 𝑧  /  𝑛 ) ) | 
						
							| 18 | 17 | fvoveq1d | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) )  =  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) | 
						
							| 19 | 16 18 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) )  =  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 21 |  | ovex | ⊢ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  ∈  V | 
						
							| 22 | 19 20 21 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ‘ 𝑛 )  =  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ‘ 𝑛 )  =  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 24 | 5 | eldifad | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  ℂ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  𝑧  ∈  ℂ ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 27 | 26 | peano2nnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 28 | 27 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℝ+ ) | 
						
							| 29 | 26 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℝ+ ) | 
						
							| 30 | 28 29 | rpdivcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  +  1 )  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 31 | 30 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 32 | 31 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 33 | 25 32 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 34 | 26 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℂ ) | 
						
							| 35 | 26 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  𝑛  ≠  0 ) | 
						
							| 36 | 25 34 35 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑧  /  𝑛 )  ∈  ℂ ) | 
						
							| 37 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 38 | 36 37 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑧  /  𝑛 )  +  1 )  ∈  ℂ ) | 
						
							| 39 | 5 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  𝑧  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 40 | 39 26 | dmgmdivn0 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑧  /  𝑛 )  +  1 )  ≠  0 ) | 
						
							| 41 | 38 40 | logcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 42 | 33 41 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 43 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 44 |  | seqfn | ⊢ ( 1  ∈  ℤ  →  seq 1 (  ∘f   +  ,  𝐺 )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 45 | 43 44 | ax-mp | ⊢ seq 1 (  ∘f   +  ,  𝐺 )  Fn  ( ℤ≥ ‘ 1 ) | 
						
							| 46 | 10 | fneq2i | ⊢ ( seq 1 (  ∘f   +  ,  𝐺 )  Fn  ℕ  ↔  seq 1 (  ∘f   +  ,  𝐺 )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 47 | 45 46 | mpbir | ⊢ seq 1 (  ∘f   +  ,  𝐺 )  Fn  ℕ | 
						
							| 48 | 1 2 3 | lgamgulm | ⊢ ( 𝜑  →  seq 1 (  ∘f   +  ,  𝐺 )  ∈  dom  ( ⇝𝑢 ‘ 𝑈 ) ) | 
						
							| 49 |  | ulmdm | ⊢ ( seq 1 (  ∘f   +  ,  𝐺 )  ∈  dom  ( ⇝𝑢 ‘ 𝑈 )  ↔  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) ) | 
						
							| 50 | 48 49 | sylib | ⊢ ( 𝜑  →  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) ) | 
						
							| 51 |  | ulmf2 | ⊢ ( ( seq 1 (  ∘f   +  ,  𝐺 )  Fn  ℕ  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) )  →  seq 1 (  ∘f   +  ,  𝐺 ) : ℕ ⟶ ( ℂ  ↑m  𝑈 ) ) | 
						
							| 52 | 47 50 51 | sylancr | ⊢ ( 𝜑  →  seq 1 (  ∘f   +  ,  𝐺 ) : ℕ ⟶ ( ℂ  ↑m  𝑈 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  seq 1 (  ∘f   +  ,  𝐺 ) : ℕ ⟶ ( ℂ  ↑m  𝑈 ) ) | 
						
							| 54 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  𝑈 ) | 
						
							| 55 |  | seqex | ⊢ seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) )  ∈  V | 
						
							| 56 | 55 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) )  ∈  V ) | 
						
							| 57 | 3 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) | 
						
							| 58 | 57 | seqeq3d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  seq 1 (  ∘f   +  ,  𝐺 )  =  seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) ) | 
						
							| 59 | 58 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  ∘f   +  ,  𝐺 ) ‘ 𝑛 )  =  ( seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 60 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 61 | 2 60 | rabex2 | ⊢ 𝑈  ∈  V | 
						
							| 62 | 61 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑈  ∈  V ) | 
						
							| 63 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 64 | 63 10 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 65 |  | fz1ssnn | ⊢ ( 1 ... 𝑛 )  ⊆  ℕ | 
						
							| 66 | 65 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1 ... 𝑛 )  ⊆  ℕ ) | 
						
							| 67 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑧  ∈  𝑈 ) )  →  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) )  ∈  V ) | 
						
							| 68 | 62 64 66 67 | seqof2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) ‘ 𝑛 )  =  ( 𝑧  ∈  𝑈  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 69 | 68 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  ∘f   +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ) ‘ 𝑛 )  =  ( 𝑧  ∈  𝑈  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 70 | 59 69 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  ∘f   +  ,  𝐺 ) ‘ 𝑛 )  =  ( 𝑧  ∈  𝑈  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 71 | 70 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( ( seq 1 (  ∘f   +  ,  𝐺 ) ‘ 𝑛 ) ‘ 𝑧 )  =  ( ( 𝑧  ∈  𝑈  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) ) | 
						
							| 72 | 54 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  𝑧  ∈  𝑈 ) | 
						
							| 73 |  | fvex | ⊢ ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 )  ∈  V | 
						
							| 74 |  | eqid | ⊢ ( 𝑧  ∈  𝑈  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) )  =  ( 𝑧  ∈  𝑈  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 75 | 74 | fvmpt2 | ⊢ ( ( 𝑧  ∈  𝑈  ∧  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 )  ∈  V )  →  ( ( 𝑧  ∈  𝑈  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 )  =  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 76 | 72 73 75 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑧  ∈  𝑈  ↦  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 )  =  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 77 | 71 76 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  ∧  𝑛  ∈  ℕ )  →  ( ( seq 1 (  ∘f   +  ,  𝐺 ) ‘ 𝑛 ) ‘ 𝑧 )  =  ( seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 78 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) ) | 
						
							| 79 | 10 11 53 54 56 77 78 | ulmclm | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) )  ⇝  ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) ‘ 𝑧 ) ) | 
						
							| 80 | 10 11 23 42 79 | isumclim | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  =  ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) ‘ 𝑧 ) ) | 
						
							| 81 |  | ulmcl | ⊢ ( seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) )  →  ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) : 𝑈 ⟶ ℂ ) | 
						
							| 82 | 50 81 | syl | ⊢ ( 𝜑  →  ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) : 𝑈 ⟶ ℂ ) | 
						
							| 83 | 82 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 84 | 80 83 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 85 | 5 | dmgmn0 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  𝑧  ≠  0 ) | 
						
							| 86 | 24 85 | logcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 87 | 84 86 | subcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 88 | 9 87 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( log Γ ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 89 | 88 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑈 ( log Γ ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 90 |  | ffn | ⊢ ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) : 𝑈 ⟶ ℂ  →  ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) )  Fn  𝑈 ) | 
						
							| 91 | 50 81 90 | 3syl | ⊢ ( 𝜑  →  ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) )  Fn  𝑈 ) | 
						
							| 92 |  | nfcv | ⊢ Ⅎ 𝑧 ( ⇝𝑢 ‘ 𝑈 ) | 
						
							| 93 |  | nfcv | ⊢ Ⅎ 𝑧 1 | 
						
							| 94 |  | nfcv | ⊢ Ⅎ 𝑧  ∘f   + | 
						
							| 95 |  | nfcv | ⊢ Ⅎ 𝑧 ℕ | 
						
							| 96 |  | nfmpt1 | ⊢ Ⅎ 𝑧 ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) | 
						
							| 97 | 95 96 | nfmpt | ⊢ Ⅎ 𝑧 ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) | 
						
							| 98 | 3 97 | nfcxfr | ⊢ Ⅎ 𝑧 𝐺 | 
						
							| 99 | 93 94 98 | nfseq | ⊢ Ⅎ 𝑧 seq 1 (  ∘f   +  ,  𝐺 ) | 
						
							| 100 | 92 99 | nffv | ⊢ Ⅎ 𝑧 ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) | 
						
							| 101 | 100 | dffn5f | ⊢ ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) )  Fn  𝑈  ↔  ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) )  =  ( 𝑧  ∈  𝑈  ↦  ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) ‘ 𝑧 ) ) ) | 
						
							| 102 | 91 101 | sylib | ⊢ ( 𝜑  →  ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) )  =  ( 𝑧  ∈  𝑈  ↦  ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) ‘ 𝑧 ) ) ) | 
						
							| 103 | 9 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) )  =  ( ( Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) )  +  ( log ‘ 𝑧 ) ) ) | 
						
							| 104 | 84 86 | npcand | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( ( Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) )  +  ( log ‘ 𝑧 ) )  =  Σ 𝑛  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑛 )  +  1 ) ) ) ) | 
						
							| 105 | 103 104 80 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑈 )  →  ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) ‘ 𝑧 )  =  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) | 
						
							| 106 | 105 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝑈  ↦  ( ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) ) ‘ 𝑧 ) )  =  ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) | 
						
							| 107 | 102 106 | eqtrd | ⊢ ( 𝜑  →  ( ( ⇝𝑢 ‘ 𝑈 ) ‘ seq 1 (  ∘f   +  ,  𝐺 ) )  =  ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) | 
						
							| 108 | 50 107 | breqtrd | ⊢ ( 𝜑  →  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) | 
						
							| 109 | 89 108 | jca | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝑈 ( log Γ ‘ 𝑧 )  ∈  ℂ  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) ) |