| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgamgulm.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 2 |
|
lgamgulm.u |
⊢ 𝑈 = { 𝑥 ∈ ℂ ∣ ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) } |
| 3 |
|
lgamgulm.g |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ 𝑈 ↦ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) ) ) |
| 4 |
1 2 3
|
lgamgulm2 |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑈 ( log Γ ‘ 𝑧 ) ∈ ℂ ∧ seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ) |
| 5 |
4
|
simprd |
⊢ ( 𝜑 → seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) |
| 6 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) ) = ( 𝑚 ∈ ℕ ↦ if ( ( 2 · 𝑅 ) ≤ 𝑚 , ( 𝑅 · ( ( 2 · ( 𝑅 + 1 ) ) / ( 𝑚 ↑ 2 ) ) ) , ( ( 𝑅 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) + ( ( log ‘ ( ( 𝑅 + 1 ) · 𝑚 ) ) + π ) ) ) ) |
| 7 |
1 2 3 6
|
lgamgulmlem6 |
⊢ ( 𝜑 → ( seq 1 ( ∘f + , 𝐺 ) ∈ dom ( ⇝𝑢 ‘ 𝑈 ) ∧ ( seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) ) ) |
| 8 |
7
|
simprd |
⊢ ( 𝜑 → ( seq 1 ( ∘f + , 𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧 ∈ 𝑈 ↦ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) ) |
| 9 |
5 8
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) |
| 10 |
1
|
nnrpd |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑅 ∈ ℝ+ ) |
| 12 |
11
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( log ‘ 𝑅 ) ∈ ℝ ) |
| 13 |
|
pire |
⊢ π ∈ ℝ |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → π ∈ ℝ ) |
| 15 |
12 14
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( log ‘ 𝑅 ) + π ) ∈ ℝ ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 17 |
15 16
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ( log ‘ 𝑅 ) + π ) + 𝑦 ) ∈ ℝ ) |
| 18 |
17
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) ) → ( ( ( log ‘ 𝑅 ) + π ) + 𝑦 ) ∈ ℝ ) |
| 19 |
4
|
simpld |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑈 ( log Γ ‘ 𝑧 ) ∈ ℂ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑧 ∈ 𝑈 ( log Γ ‘ 𝑧 ) ∈ ℂ ) |
| 21 |
20
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( log Γ ‘ 𝑧 ) ∈ ℂ ) |
| 22 |
21
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( log Γ ‘ 𝑧 ) ) ∈ ℝ ) |
| 23 |
22
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) → ( abs ‘ ( log Γ ‘ 𝑧 ) ) ∈ ℝ ) |
| 24 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑅 ∈ ℝ+ ) |
| 25 |
24
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ 𝑅 ) ∈ ℝ ) |
| 26 |
13
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → π ∈ ℝ ) |
| 27 |
25 26
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( log ‘ 𝑅 ) + π ) ∈ ℝ ) |
| 28 |
1 2
|
lgamgulmlem1 |
⊢ ( 𝜑 → 𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑈 ⊆ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 30 |
29
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 31 |
30
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ ℂ ) |
| 32 |
30
|
dmgmn0 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ≠ 0 ) |
| 33 |
31 32
|
logcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ 𝑧 ) ∈ ℂ ) |
| 34 |
21 33
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ∈ ℂ ) |
| 35 |
34
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 36 |
27 35
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( ( log ‘ 𝑅 ) + π ) + ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ∈ ℝ ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) → ( ( ( log ‘ 𝑅 ) + π ) + ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ∈ ℝ ) |
| 38 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) → ( ( ( log ‘ 𝑅 ) + π ) + 𝑦 ) ∈ ℝ ) |
| 39 |
33
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( log ‘ 𝑧 ) ) ∈ ℝ ) |
| 40 |
39 35
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ ( log ‘ 𝑧 ) ) + ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ∈ ℝ ) |
| 41 |
33
|
negcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → - ( log ‘ 𝑧 ) ∈ ℂ ) |
| 42 |
21 41
|
abs2difd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ ( log Γ ‘ 𝑧 ) ) − ( abs ‘ - ( log ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( ( log Γ ‘ 𝑧 ) − - ( log ‘ 𝑧 ) ) ) ) |
| 43 |
33
|
absnegd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ - ( log ‘ 𝑧 ) ) = ( abs ‘ ( log ‘ 𝑧 ) ) ) |
| 44 |
43
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ ( log Γ ‘ 𝑧 ) ) − ( abs ‘ - ( log ‘ 𝑧 ) ) ) = ( ( abs ‘ ( log Γ ‘ 𝑧 ) ) − ( abs ‘ ( log ‘ 𝑧 ) ) ) ) |
| 45 |
21 33
|
subnegd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( log Γ ‘ 𝑧 ) − - ( log ‘ 𝑧 ) ) = ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) |
| 46 |
45
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( ( log Γ ‘ 𝑧 ) − - ( log ‘ 𝑧 ) ) ) = ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) |
| 47 |
42 44 46
|
3brtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ ( log Γ ‘ 𝑧 ) ) − ( abs ‘ ( log ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) |
| 48 |
22 39 35
|
lesubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( ( abs ‘ ( log Γ ‘ 𝑧 ) ) − ( abs ‘ ( log ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ↔ ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ ( ( abs ‘ ( log ‘ 𝑧 ) ) + ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ) ) |
| 49 |
47 48
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ ( ( abs ‘ ( log ‘ 𝑧 ) ) + ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ) |
| 50 |
31 32
|
absrpcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ 𝑧 ) ∈ ℝ+ ) |
| 51 |
50
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ ( abs ‘ 𝑧 ) ) ∈ ℝ ) |
| 52 |
51
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ ( abs ‘ 𝑧 ) ) ∈ ℂ ) |
| 53 |
52
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 54 |
53 26
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) ) + π ) ∈ ℝ ) |
| 55 |
|
abslogle |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 0 ) → ( abs ‘ ( log ‘ 𝑧 ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) ) + π ) ) |
| 56 |
31 32 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( log ‘ 𝑧 ) ) ≤ ( ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) ) + π ) ) |
| 57 |
|
df-neg |
⊢ - ( log ‘ 𝑅 ) = ( 0 − ( log ‘ 𝑅 ) ) |
| 58 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 59 |
58
|
oveq1i |
⊢ ( ( log ‘ 1 ) − ( log ‘ 𝑅 ) ) = ( 0 − ( log ‘ 𝑅 ) ) |
| 60 |
57 59
|
eqtr4i |
⊢ - ( log ‘ 𝑅 ) = ( ( log ‘ 1 ) − ( log ‘ 𝑅 ) ) |
| 61 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 62 |
|
relogdiv |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( log ‘ ( 1 / 𝑅 ) ) = ( ( log ‘ 1 ) − ( log ‘ 𝑅 ) ) ) |
| 63 |
61 24 62
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ ( 1 / 𝑅 ) ) = ( ( log ‘ 1 ) − ( log ‘ 𝑅 ) ) ) |
| 64 |
60 63
|
eqtr4id |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → - ( log ‘ 𝑅 ) = ( log ‘ ( 1 / 𝑅 ) ) ) |
| 65 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑧 + 𝑘 ) = ( 𝑧 + 0 ) ) |
| 66 |
65
|
fveq2d |
⊢ ( 𝑘 = 0 → ( abs ‘ ( 𝑧 + 𝑘 ) ) = ( abs ‘ ( 𝑧 + 0 ) ) ) |
| 67 |
66
|
breq2d |
⊢ ( 𝑘 = 0 → ( ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑧 + 𝑘 ) ) ↔ ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑧 + 0 ) ) ) ) |
| 68 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( abs ‘ 𝑥 ) = ( abs ‘ 𝑧 ) ) |
| 69 |
68
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( abs ‘ 𝑥 ) ≤ 𝑅 ↔ ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) |
| 70 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑧 → ( abs ‘ ( 𝑥 + 𝑘 ) ) = ( abs ‘ ( 𝑧 + 𝑘 ) ) ) |
| 71 |
70
|
breq2d |
⊢ ( 𝑥 = 𝑧 → ( ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑧 + 𝑘 ) ) ) ) |
| 72 |
71
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ↔ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑧 + 𝑘 ) ) ) ) |
| 73 |
69 72
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( abs ‘ 𝑥 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑥 + 𝑘 ) ) ) ↔ ( ( abs ‘ 𝑧 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑧 + 𝑘 ) ) ) ) ) |
| 74 |
73 2
|
elrab2 |
⊢ ( 𝑧 ∈ 𝑈 ↔ ( 𝑧 ∈ ℂ ∧ ( ( abs ‘ 𝑧 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑧 + 𝑘 ) ) ) ) ) |
| 75 |
74
|
simprbi |
⊢ ( 𝑧 ∈ 𝑈 → ( ( abs ‘ 𝑧 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑧 + 𝑘 ) ) ) ) |
| 76 |
75
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ 𝑧 ) ≤ 𝑅 ∧ ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑧 + 𝑘 ) ) ) ) |
| 77 |
76
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ∀ 𝑘 ∈ ℕ0 ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑧 + 𝑘 ) ) ) |
| 78 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 79 |
78
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → 0 ∈ ℕ0 ) |
| 80 |
67 77 79
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( 1 / 𝑅 ) ≤ ( abs ‘ ( 𝑧 + 0 ) ) ) |
| 81 |
31
|
addridd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑧 + 0 ) = 𝑧 ) |
| 82 |
81
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( 𝑧 + 0 ) ) = ( abs ‘ 𝑧 ) ) |
| 83 |
80 82
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( 1 / 𝑅 ) ≤ ( abs ‘ 𝑧 ) ) |
| 84 |
24
|
rpreccld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( 1 / 𝑅 ) ∈ ℝ+ ) |
| 85 |
84 50
|
logled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 1 / 𝑅 ) ≤ ( abs ‘ 𝑧 ) ↔ ( log ‘ ( 1 / 𝑅 ) ) ≤ ( log ‘ ( abs ‘ 𝑧 ) ) ) ) |
| 86 |
83 85
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ ( 1 / 𝑅 ) ) ≤ ( log ‘ ( abs ‘ 𝑧 ) ) ) |
| 87 |
64 86
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → - ( log ‘ 𝑅 ) ≤ ( log ‘ ( abs ‘ 𝑧 ) ) ) |
| 88 |
76
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ 𝑧 ) ≤ 𝑅 ) |
| 89 |
50 24
|
logled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ 𝑧 ) ≤ 𝑅 ↔ ( log ‘ ( abs ‘ 𝑧 ) ) ≤ ( log ‘ 𝑅 ) ) ) |
| 90 |
88 89
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( log ‘ ( abs ‘ 𝑧 ) ) ≤ ( log ‘ 𝑅 ) ) |
| 91 |
51 25
|
absled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) ) ≤ ( log ‘ 𝑅 ) ↔ ( - ( log ‘ 𝑅 ) ≤ ( log ‘ ( abs ‘ 𝑧 ) ) ∧ ( log ‘ ( abs ‘ 𝑧 ) ) ≤ ( log ‘ 𝑅 ) ) ) ) |
| 92 |
87 90 91
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) ) ≤ ( log ‘ 𝑅 ) ) |
| 93 |
53 25 26 92
|
leadd1dd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) ) + π ) ≤ ( ( log ‘ 𝑅 ) + π ) ) |
| 94 |
39 54 27 56 93
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( log ‘ 𝑧 ) ) ≤ ( ( log ‘ 𝑅 ) + π ) ) |
| 95 |
39 27 35 94
|
leadd1dd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ ( log ‘ 𝑧 ) ) + ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ≤ ( ( ( log ‘ 𝑅 ) + π ) + ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ) |
| 96 |
22 40 36 49 95
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ ( ( ( log ‘ 𝑅 ) + π ) + ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) → ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ ( ( ( log ‘ 𝑅 ) + π ) + ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ) |
| 98 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) → ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 99 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
| 100 |
27
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) → ( ( log ‘ 𝑅 ) + π ) ∈ ℝ ) |
| 101 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) → ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) |
| 102 |
98 99 100 101
|
leadd2dd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) → ( ( ( log ‘ 𝑅 ) + π ) + ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ) ≤ ( ( ( log ‘ 𝑅 ) + π ) + 𝑦 ) ) |
| 103 |
23 37 38 97 102
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) → ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ ( ( ( log ‘ 𝑅 ) + π ) + 𝑦 ) ) |
| 104 |
103
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝑈 ) → ( ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 → ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ ( ( ( log ‘ 𝑅 ) + π ) + 𝑦 ) ) ) |
| 105 |
104
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 → ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ ( ( ( log ‘ 𝑅 ) + π ) + 𝑦 ) ) ) |
| 106 |
105
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) ) → ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ ( ( ( log ‘ 𝑅 ) + π ) + 𝑦 ) ) |
| 107 |
|
brralrspcev |
⊢ ( ( ( ( ( log ‘ 𝑅 ) + π ) + 𝑦 ) ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ ( ( ( log ‘ 𝑅 ) + π ) + 𝑦 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ 𝑟 ) |
| 108 |
18 106 107
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 ) + ( log ‘ 𝑧 ) ) ) ≤ 𝑦 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ 𝑟 ) |
| 109 |
9 108
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ℝ ∀ 𝑧 ∈ 𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) ) ≤ 𝑟 ) |