| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgamgulm.r | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 2 |  | lgamgulm.u | ⊢ 𝑈  =  { 𝑥  ∈  ℂ  ∣  ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) ) } | 
						
							| 3 |  | lgamgulm.g | ⊢ 𝐺  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  𝑈  ↦  ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) ) ) | 
						
							| 4 | 1 2 3 | lgamgulm2 | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝑈 ( log Γ ‘ 𝑧 )  ∈  ℂ  ∧  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( 𝜑  →  seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  if ( ( 2  ·  𝑅 )  ≤  𝑚 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  if ( ( 2  ·  𝑅 )  ≤  𝑚 ,  ( 𝑅  ·  ( ( 2  ·  ( 𝑅  +  1 ) )  /  ( 𝑚 ↑ 2 ) ) ) ,  ( ( 𝑅  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  +  ( ( log ‘ ( ( 𝑅  +  1 )  ·  𝑚 ) )  +  π ) ) ) ) | 
						
							| 7 | 1 2 3 6 | lgamgulmlem6 | ⊢ ( 𝜑  →  ( seq 1 (  ∘f   +  ,  𝐺 )  ∈  dom  ( ⇝𝑢 ‘ 𝑈 )  ∧  ( seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 ) ) ) | 
						
							| 8 | 7 | simprd | ⊢ ( 𝜑  →  ( seq 1 (  ∘f   +  ,  𝐺 ) ( ⇝𝑢 ‘ 𝑈 ) ( 𝑧  ∈  𝑈  ↦  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 ) ) | 
						
							| 9 | 5 8 | mpd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 ) | 
						
							| 10 | 1 | nnrpd | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑅  ∈  ℝ+ ) | 
						
							| 12 | 11 | relogcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( log ‘ 𝑅 )  ∈  ℝ ) | 
						
							| 13 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  π  ∈  ℝ ) | 
						
							| 15 | 12 14 | readdcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ( log ‘ 𝑅 )  +  π )  ∈  ℝ ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 17 | 15 16 | readdcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ( ( log ‘ 𝑅 )  +  π )  +  𝑦 )  ∈  ℝ ) | 
						
							| 18 | 17 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 ) )  →  ( ( ( log ‘ 𝑅 )  +  π )  +  𝑦 )  ∈  ℝ ) | 
						
							| 19 | 4 | simpld | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑈 ( log Γ ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ∀ 𝑧  ∈  𝑈 ( log Γ ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 21 | 20 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( log Γ ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 22 | 21 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( log Γ ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  ∧  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 )  →  ( abs ‘ ( log Γ ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 24 | 11 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  𝑅  ∈  ℝ+ ) | 
						
							| 25 | 24 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ 𝑅 )  ∈  ℝ ) | 
						
							| 26 | 13 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  π  ∈  ℝ ) | 
						
							| 27 | 25 26 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( log ‘ 𝑅 )  +  π )  ∈  ℝ ) | 
						
							| 28 | 1 2 | lgamgulmlem1 | ⊢ ( 𝜑  →  𝑈  ⊆  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑈  ⊆  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 30 | 29 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 31 | 30 | eldifad | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  𝑧  ∈  ℂ ) | 
						
							| 32 | 30 | dmgmn0 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  𝑧  ≠  0 ) | 
						
							| 33 | 31 32 | logcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 34 | 21 33 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 35 | 34 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ∈  ℝ ) | 
						
							| 36 | 27 35 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( ( log ‘ 𝑅 )  +  π )  +  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) )  ∈  ℝ ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  ∧  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 )  →  ( ( ( log ‘ 𝑅 )  +  π )  +  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) )  ∈  ℝ ) | 
						
							| 38 | 17 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  ∧  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 )  →  ( ( ( log ‘ 𝑅 )  +  π )  +  𝑦 )  ∈  ℝ ) | 
						
							| 39 | 33 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( log ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 40 | 39 35 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ ( log ‘ 𝑧 ) )  +  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) )  ∈  ℝ ) | 
						
							| 41 | 33 | negcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  - ( log ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 42 | 21 41 | abs2difd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ ( log Γ ‘ 𝑧 ) )  −  ( abs ‘ - ( log ‘ 𝑧 ) ) )  ≤  ( abs ‘ ( ( log Γ ‘ 𝑧 )  −  - ( log ‘ 𝑧 ) ) ) ) | 
						
							| 43 | 33 | absnegd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ - ( log ‘ 𝑧 ) )  =  ( abs ‘ ( log ‘ 𝑧 ) ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ ( log Γ ‘ 𝑧 ) )  −  ( abs ‘ - ( log ‘ 𝑧 ) ) )  =  ( ( abs ‘ ( log Γ ‘ 𝑧 ) )  −  ( abs ‘ ( log ‘ 𝑧 ) ) ) ) | 
						
							| 45 | 21 33 | subnegd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( log Γ ‘ 𝑧 )  −  - ( log ‘ 𝑧 ) )  =  ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( ( log Γ ‘ 𝑧 )  −  - ( log ‘ 𝑧 ) ) )  =  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) | 
						
							| 47 | 42 44 46 | 3brtr3d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ ( log Γ ‘ 𝑧 ) )  −  ( abs ‘ ( log ‘ 𝑧 ) ) )  ≤  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) | 
						
							| 48 | 22 39 35 | lesubadd2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( ( abs ‘ ( log Γ ‘ 𝑧 ) )  −  ( abs ‘ ( log ‘ 𝑧 ) ) )  ≤  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ↔  ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  ( ( abs ‘ ( log ‘ 𝑧 ) )  +  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 49 | 47 48 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  ( ( abs ‘ ( log ‘ 𝑧 ) )  +  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) ) | 
						
							| 50 | 31 32 | absrpcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ 𝑧 )  ∈  ℝ+ ) | 
						
							| 51 | 50 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ ( abs ‘ 𝑧 ) )  ∈  ℝ ) | 
						
							| 52 | 51 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ ( abs ‘ 𝑧 ) )  ∈  ℂ ) | 
						
							| 53 | 52 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) )  ∈  ℝ ) | 
						
							| 54 | 53 26 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) )  +  π )  ∈  ℝ ) | 
						
							| 55 |  | abslogle | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑧  ≠  0 )  →  ( abs ‘ ( log ‘ 𝑧 ) )  ≤  ( ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) )  +  π ) ) | 
						
							| 56 | 31 32 55 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( log ‘ 𝑧 ) )  ≤  ( ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) )  +  π ) ) | 
						
							| 57 |  | df-neg | ⊢ - ( log ‘ 𝑅 )  =  ( 0  −  ( log ‘ 𝑅 ) ) | 
						
							| 58 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 59 | 58 | oveq1i | ⊢ ( ( log ‘ 1 )  −  ( log ‘ 𝑅 ) )  =  ( 0  −  ( log ‘ 𝑅 ) ) | 
						
							| 60 | 57 59 | eqtr4i | ⊢ - ( log ‘ 𝑅 )  =  ( ( log ‘ 1 )  −  ( log ‘ 𝑅 ) ) | 
						
							| 61 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 62 |  | relogdiv | ⊢ ( ( 1  ∈  ℝ+  ∧  𝑅  ∈  ℝ+ )  →  ( log ‘ ( 1  /  𝑅 ) )  =  ( ( log ‘ 1 )  −  ( log ‘ 𝑅 ) ) ) | 
						
							| 63 | 61 24 62 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ ( 1  /  𝑅 ) )  =  ( ( log ‘ 1 )  −  ( log ‘ 𝑅 ) ) ) | 
						
							| 64 | 60 63 | eqtr4id | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  - ( log ‘ 𝑅 )  =  ( log ‘ ( 1  /  𝑅 ) ) ) | 
						
							| 65 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( 𝑧  +  𝑘 )  =  ( 𝑧  +  0 ) ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( 𝑘  =  0  →  ( abs ‘ ( 𝑧  +  𝑘 ) )  =  ( abs ‘ ( 𝑧  +  0 ) ) ) | 
						
							| 67 | 66 | breq2d | ⊢ ( 𝑘  =  0  →  ( ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑧  +  𝑘 ) )  ↔  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑧  +  0 ) ) ) ) | 
						
							| 68 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 𝑧 ) ) | 
						
							| 69 | 68 | breq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( abs ‘ 𝑥 )  ≤  𝑅  ↔  ( abs ‘ 𝑧 )  ≤  𝑅 ) ) | 
						
							| 70 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑧  →  ( abs ‘ ( 𝑥  +  𝑘 ) )  =  ( abs ‘ ( 𝑧  +  𝑘 ) ) ) | 
						
							| 71 | 70 | breq2d | ⊢ ( 𝑥  =  𝑧  →  ( ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) )  ↔  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑧  +  𝑘 ) ) ) ) | 
						
							| 72 | 71 | ralbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) )  ↔  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑧  +  𝑘 ) ) ) ) | 
						
							| 73 | 69 72 | anbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( abs ‘ 𝑥 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑥  +  𝑘 ) ) )  ↔  ( ( abs ‘ 𝑧 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑧  +  𝑘 ) ) ) ) ) | 
						
							| 74 | 73 2 | elrab2 | ⊢ ( 𝑧  ∈  𝑈  ↔  ( 𝑧  ∈  ℂ  ∧  ( ( abs ‘ 𝑧 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑧  +  𝑘 ) ) ) ) ) | 
						
							| 75 | 74 | simprbi | ⊢ ( 𝑧  ∈  𝑈  →  ( ( abs ‘ 𝑧 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑧  +  𝑘 ) ) ) ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ 𝑧 )  ≤  𝑅  ∧  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑧  +  𝑘 ) ) ) ) | 
						
							| 77 | 76 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ∀ 𝑘  ∈  ℕ0 ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑧  +  𝑘 ) ) ) | 
						
							| 78 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 79 | 78 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  0  ∈  ℕ0 ) | 
						
							| 80 | 67 77 79 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( 1  /  𝑅 )  ≤  ( abs ‘ ( 𝑧  +  0 ) ) ) | 
						
							| 81 | 31 | addridd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( 𝑧  +  0 )  =  𝑧 ) | 
						
							| 82 | 81 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( 𝑧  +  0 ) )  =  ( abs ‘ 𝑧 ) ) | 
						
							| 83 | 80 82 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( 1  /  𝑅 )  ≤  ( abs ‘ 𝑧 ) ) | 
						
							| 84 | 24 | rpreccld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( 1  /  𝑅 )  ∈  ℝ+ ) | 
						
							| 85 | 84 50 | logled | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( 1  /  𝑅 )  ≤  ( abs ‘ 𝑧 )  ↔  ( log ‘ ( 1  /  𝑅 ) )  ≤  ( log ‘ ( abs ‘ 𝑧 ) ) ) ) | 
						
							| 86 | 83 85 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ ( 1  /  𝑅 ) )  ≤  ( log ‘ ( abs ‘ 𝑧 ) ) ) | 
						
							| 87 | 64 86 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  - ( log ‘ 𝑅 )  ≤  ( log ‘ ( abs ‘ 𝑧 ) ) ) | 
						
							| 88 | 76 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ 𝑧 )  ≤  𝑅 ) | 
						
							| 89 | 50 24 | logled | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ 𝑧 )  ≤  𝑅  ↔  ( log ‘ ( abs ‘ 𝑧 ) )  ≤  ( log ‘ 𝑅 ) ) ) | 
						
							| 90 | 88 89 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( log ‘ ( abs ‘ 𝑧 ) )  ≤  ( log ‘ 𝑅 ) ) | 
						
							| 91 | 51 25 | absled | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) )  ≤  ( log ‘ 𝑅 )  ↔  ( - ( log ‘ 𝑅 )  ≤  ( log ‘ ( abs ‘ 𝑧 ) )  ∧  ( log ‘ ( abs ‘ 𝑧 ) )  ≤  ( log ‘ 𝑅 ) ) ) ) | 
						
							| 92 | 87 90 91 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) )  ≤  ( log ‘ 𝑅 ) ) | 
						
							| 93 | 53 25 26 92 | leadd1dd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ ( log ‘ ( abs ‘ 𝑧 ) ) )  +  π )  ≤  ( ( log ‘ 𝑅 )  +  π ) ) | 
						
							| 94 | 39 54 27 56 93 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( log ‘ 𝑧 ) )  ≤  ( ( log ‘ 𝑅 )  +  π ) ) | 
						
							| 95 | 39 27 35 94 | leadd1dd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ ( log ‘ 𝑧 ) )  +  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) )  ≤  ( ( ( log ‘ 𝑅 )  +  π )  +  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) ) | 
						
							| 96 | 22 40 36 49 95 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  ( ( ( log ‘ 𝑅 )  +  π )  +  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  ∧  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 )  →  ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  ( ( ( log ‘ 𝑅 )  +  π )  +  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) ) ) | 
						
							| 98 | 35 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  ∧  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 )  →  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ∈  ℝ ) | 
						
							| 99 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  ∧  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 )  →  𝑦  ∈  ℝ ) | 
						
							| 100 | 27 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  ∧  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 )  →  ( ( log ‘ 𝑅 )  +  π )  ∈  ℝ ) | 
						
							| 101 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  ∧  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 )  →  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 ) | 
						
							| 102 | 98 99 100 101 | leadd2dd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  ∧  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 )  →  ( ( ( log ‘ 𝑅 )  +  π )  +  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) ) )  ≤  ( ( ( log ‘ 𝑅 )  +  π )  +  𝑦 ) ) | 
						
							| 103 | 23 37 38 97 102 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  ∧  ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 )  →  ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  ( ( ( log ‘ 𝑅 )  +  π )  +  𝑦 ) ) | 
						
							| 104 | 103 | ex | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑧  ∈  𝑈 )  →  ( ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦  →  ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  ( ( ( log ‘ 𝑅 )  +  π )  +  𝑦 ) ) ) | 
						
							| 105 | 104 | ralimdva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ∀ 𝑧  ∈  𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦  →  ∀ 𝑧  ∈  𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  ( ( ( log ‘ 𝑅 )  +  π )  +  𝑦 ) ) ) | 
						
							| 106 | 105 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 ) )  →  ∀ 𝑧  ∈  𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  ( ( ( log ‘ 𝑅 )  +  π )  +  𝑦 ) ) | 
						
							| 107 |  | brralrspcev | ⊢ ( ( ( ( ( log ‘ 𝑅 )  +  π )  +  𝑦 )  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  ( ( ( log ‘ 𝑅 )  +  π )  +  𝑦 ) )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑧  ∈  𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  𝑟 ) | 
						
							| 108 | 18 106 107 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑈 ( abs ‘ ( ( log Γ ‘ 𝑧 )  +  ( log ‘ 𝑧 ) ) )  ≤  𝑦 ) )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑧  ∈  𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  𝑟 ) | 
						
							| 109 | 9 108 | rexlimddv | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ℝ ∀ 𝑧  ∈  𝑈 ( abs ‘ ( log Γ ‘ 𝑧 ) )  ≤  𝑟 ) |