Metamath Proof Explorer
Description: If A is not a nonpositive integer, then A is nonzero.
(Contributed by Mario Carneiro, 3-Jul-2017)
|
|
Ref |
Expression |
|
Hypothesis |
dmgmn0.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
|
Assertion |
dmgmn0 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmgmn0.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 2 |
1
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 3 |
2
|
addridd |
⊢ ( 𝜑 → ( 𝐴 + 0 ) = 𝐴 ) |
| 4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 5 |
|
dmgmaddn0 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 0 ∈ ℕ0 ) → ( 𝐴 + 0 ) ≠ 0 ) |
| 6 |
1 4 5
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 + 0 ) ≠ 0 ) |
| 7 |
3 6
|
eqnetrrd |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |