Metamath Proof Explorer


Theorem dmgmn0

Description: If A is not a nonpositive integer, then A is nonzero. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypothesis dmgmn0.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
Assertion dmgmn0 ( 𝜑𝐴 ≠ 0 )

Proof

Step Hyp Ref Expression
1 dmgmn0.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
2 1 eldifad ( 𝜑𝐴 ∈ ℂ )
3 2 addid1d ( 𝜑 → ( 𝐴 + 0 ) = 𝐴 )
4 0nn0 0 ∈ ℕ0
5 dmgmaddn0 ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 0 ∈ ℕ0 ) → ( 𝐴 + 0 ) ≠ 0 )
6 1 4 5 sylancl ( 𝜑 → ( 𝐴 + 0 ) ≠ 0 )
7 3 6 eqnetrrd ( 𝜑𝐴 ≠ 0 )