Metamath Proof Explorer
		
		
		
		Description:  If A is not a nonpositive integer, then A is nonzero.
       (Contributed by Mario Carneiro, 3-Jul-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | dmgmn0.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
				
					|  | Assertion | dmgmn0 | ⊢  ( 𝜑  →  𝐴  ≠  0 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmgmn0.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 2 | 1 | eldifad | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 3 | 2 | addridd | ⊢ ( 𝜑  →  ( 𝐴  +  0 )  =  𝐴 ) | 
						
							| 4 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 5 |  | dmgmaddn0 | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  0  ∈  ℕ0 )  →  ( 𝐴  +  0 )  ≠  0 ) | 
						
							| 6 | 1 4 5 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  +  0 )  ≠  0 ) | 
						
							| 7 | 3 6 | eqnetrrd | ⊢ ( 𝜑  →  𝐴  ≠  0 ) |