| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmgmn0.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
| 2 |
|
dmgmaddnn0.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 3 |
1
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 4 |
2
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 5 |
3 4
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑁 ) ∈ ℂ ) |
| 6 |
|
eldmgm |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) ) |
| 7 |
1 6
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) ) |
| 8 |
7
|
simprd |
⊢ ( 𝜑 → ¬ - 𝐴 ∈ ℕ0 ) |
| 9 |
3 4
|
negdi2d |
⊢ ( 𝜑 → - ( 𝐴 + 𝑁 ) = ( - 𝐴 − 𝑁 ) ) |
| 10 |
9
|
oveq1d |
⊢ ( 𝜑 → ( - ( 𝐴 + 𝑁 ) + 𝑁 ) = ( ( - 𝐴 − 𝑁 ) + 𝑁 ) ) |
| 11 |
3
|
negcld |
⊢ ( 𝜑 → - 𝐴 ∈ ℂ ) |
| 12 |
11 4
|
npcand |
⊢ ( 𝜑 → ( ( - 𝐴 − 𝑁 ) + 𝑁 ) = - 𝐴 ) |
| 13 |
10 12
|
eqtrd |
⊢ ( 𝜑 → ( - ( 𝐴 + 𝑁 ) + 𝑁 ) = - 𝐴 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) → ( - ( 𝐴 + 𝑁 ) + 𝑁 ) = - 𝐴 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) → - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 17 |
15 16
|
nn0addcld |
⊢ ( ( 𝜑 ∧ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) → ( - ( 𝐴 + 𝑁 ) + 𝑁 ) ∈ ℕ0 ) |
| 18 |
14 17
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) → - 𝐴 ∈ ℕ0 ) |
| 19 |
8 18
|
mtand |
⊢ ( 𝜑 → ¬ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) |
| 20 |
|
eldmgm |
⊢ ( ( 𝐴 + 𝑁 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( ( 𝐴 + 𝑁 ) ∈ ℂ ∧ ¬ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) ) |
| 21 |
5 19 20
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐴 + 𝑁 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |