Metamath Proof Explorer


Theorem dmgmaddnn0

Description: If A is not a nonpositive integer and N is a nonnegative integer, then A + N is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses dmgmn0.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
dmgmaddnn0.n ( 𝜑𝑁 ∈ ℕ0 )
Assertion dmgmaddnn0 ( 𝜑 → ( 𝐴 + 𝑁 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )

Proof

Step Hyp Ref Expression
1 dmgmn0.a ( 𝜑𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
2 dmgmaddnn0.n ( 𝜑𝑁 ∈ ℕ0 )
3 1 eldifad ( 𝜑𝐴 ∈ ℂ )
4 2 nn0cnd ( 𝜑𝑁 ∈ ℂ )
5 3 4 addcld ( 𝜑 → ( 𝐴 + 𝑁 ) ∈ ℂ )
6 eldmgm ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) )
7 1 6 sylib ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) )
8 7 simprd ( 𝜑 → ¬ - 𝐴 ∈ ℕ0 )
9 3 4 negdi2d ( 𝜑 → - ( 𝐴 + 𝑁 ) = ( - 𝐴𝑁 ) )
10 9 oveq1d ( 𝜑 → ( - ( 𝐴 + 𝑁 ) + 𝑁 ) = ( ( - 𝐴𝑁 ) + 𝑁 ) )
11 3 negcld ( 𝜑 → - 𝐴 ∈ ℂ )
12 11 4 npcand ( 𝜑 → ( ( - 𝐴𝑁 ) + 𝑁 ) = - 𝐴 )
13 10 12 eqtrd ( 𝜑 → ( - ( 𝐴 + 𝑁 ) + 𝑁 ) = - 𝐴 )
14 13 adantr ( ( 𝜑 ∧ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) → ( - ( 𝐴 + 𝑁 ) + 𝑁 ) = - 𝐴 )
15 simpr ( ( 𝜑 ∧ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) → - ( 𝐴 + 𝑁 ) ∈ ℕ0 )
16 2 adantr ( ( 𝜑 ∧ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) → 𝑁 ∈ ℕ0 )
17 15 16 nn0addcld ( ( 𝜑 ∧ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) → ( - ( 𝐴 + 𝑁 ) + 𝑁 ) ∈ ℕ0 )
18 14 17 eqeltrrd ( ( 𝜑 ∧ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) → - 𝐴 ∈ ℕ0 )
19 8 18 mtand ( 𝜑 → ¬ - ( 𝐴 + 𝑁 ) ∈ ℕ0 )
20 eldmgm ( ( 𝐴 + 𝑁 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( ( 𝐴 + 𝑁 ) ∈ ℂ ∧ ¬ - ( 𝐴 + 𝑁 ) ∈ ℕ0 ) )
21 5 19 20 sylanbrc ( 𝜑 → ( 𝐴 + 𝑁 ) ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )