| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmgmn0.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 2 |  | dmgmaddnn0.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 | 1 | eldifad | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 4 | 2 | nn0cnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 5 | 3 4 | addcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝑁 )  ∈  ℂ ) | 
						
							| 6 |  | eldmgm | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 7 | 1 6 | sylib | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℂ  ∧  ¬  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 8 | 7 | simprd | ⊢ ( 𝜑  →  ¬  - 𝐴  ∈  ℕ0 ) | 
						
							| 9 | 3 4 | negdi2d | ⊢ ( 𝜑  →  - ( 𝐴  +  𝑁 )  =  ( - 𝐴  −  𝑁 ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝜑  →  ( - ( 𝐴  +  𝑁 )  +  𝑁 )  =  ( ( - 𝐴  −  𝑁 )  +  𝑁 ) ) | 
						
							| 11 | 3 | negcld | ⊢ ( 𝜑  →  - 𝐴  ∈  ℂ ) | 
						
							| 12 | 11 4 | npcand | ⊢ ( 𝜑  →  ( ( - 𝐴  −  𝑁 )  +  𝑁 )  =  - 𝐴 ) | 
						
							| 13 | 10 12 | eqtrd | ⊢ ( 𝜑  →  ( - ( 𝐴  +  𝑁 )  +  𝑁 )  =  - 𝐴 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  - ( 𝐴  +  𝑁 )  ∈  ℕ0 )  →  ( - ( 𝐴  +  𝑁 )  +  𝑁 )  =  - 𝐴 ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  - ( 𝐴  +  𝑁 )  ∈  ℕ0 )  →  - ( 𝐴  +  𝑁 )  ∈  ℕ0 ) | 
						
							| 16 | 2 | adantr | ⊢ ( ( 𝜑  ∧  - ( 𝐴  +  𝑁 )  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 17 | 15 16 | nn0addcld | ⊢ ( ( 𝜑  ∧  - ( 𝐴  +  𝑁 )  ∈  ℕ0 )  →  ( - ( 𝐴  +  𝑁 )  +  𝑁 )  ∈  ℕ0 ) | 
						
							| 18 | 14 17 | eqeltrrd | ⊢ ( ( 𝜑  ∧  - ( 𝐴  +  𝑁 )  ∈  ℕ0 )  →  - 𝐴  ∈  ℕ0 ) | 
						
							| 19 | 8 18 | mtand | ⊢ ( 𝜑  →  ¬  - ( 𝐴  +  𝑁 )  ∈  ℕ0 ) | 
						
							| 20 |  | eldmgm | ⊢ ( ( 𝐴  +  𝑁 )  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↔  ( ( 𝐴  +  𝑁 )  ∈  ℂ  ∧  ¬  - ( 𝐴  +  𝑁 )  ∈  ℕ0 ) ) | 
						
							| 21 | 5 19 20 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐴  +  𝑁 )  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) |