| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  𝐴  ∈  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 2 |  | eldif | ⊢ ( 𝐴  ∈  ( ℤ  ∖  ℕ )  ↔  ( 𝐴  ∈  ℤ  ∧  ¬  𝐴  ∈  ℕ ) ) | 
						
							| 3 |  | elznn | ⊢ ( 𝐴  ∈  ℤ  ↔  ( 𝐴  ∈  ℝ  ∧  ( 𝐴  ∈  ℕ  ∨  - 𝐴  ∈  ℕ0 ) ) ) | 
						
							| 4 | 3 | simprbi | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  ∈  ℕ  ∨  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 5 | 4 | orcanai | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ¬  𝐴  ∈  ℕ )  →  - 𝐴  ∈  ℕ0 ) | 
						
							| 6 |  | negneg | ⊢ ( 𝐴  ∈  ℂ  →  - - 𝐴  =  𝐴 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - 𝐴  ∈  ℕ0 )  →  - - 𝐴  =  𝐴 ) | 
						
							| 8 |  | nn0negz | ⊢ ( - 𝐴  ∈  ℕ0  →  - - 𝐴  ∈  ℤ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - 𝐴  ∈  ℕ0 )  →  - - 𝐴  ∈  ℤ ) | 
						
							| 10 | 7 9 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - 𝐴  ∈  ℕ0 )  →  𝐴  ∈  ℤ ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝐴  ∈  ℂ  →  ( - 𝐴  ∈  ℕ0  →  𝐴  ∈  ℤ ) ) | 
						
							| 12 |  | nngt0 | ⊢ ( 𝐴  ∈  ℕ  →  0  <  𝐴 ) | 
						
							| 13 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 14 | 13 | lt0neg2d | ⊢ ( 𝐴  ∈  ℕ  →  ( 0  <  𝐴  ↔  - 𝐴  <  0 ) ) | 
						
							| 15 | 12 14 | mpbid | ⊢ ( 𝐴  ∈  ℕ  →  - 𝐴  <  0 ) | 
						
							| 16 | 13 | renegcld | ⊢ ( 𝐴  ∈  ℕ  →  - 𝐴  ∈  ℝ ) | 
						
							| 17 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 18 |  | ltnle | ⊢ ( ( - 𝐴  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( - 𝐴  <  0  ↔  ¬  0  ≤  - 𝐴 ) ) | 
						
							| 19 | 16 17 18 | sylancl | ⊢ ( 𝐴  ∈  ℕ  →  ( - 𝐴  <  0  ↔  ¬  0  ≤  - 𝐴 ) ) | 
						
							| 20 | 15 19 | mpbid | ⊢ ( 𝐴  ∈  ℕ  →  ¬  0  ≤  - 𝐴 ) | 
						
							| 21 |  | nn0ge0 | ⊢ ( - 𝐴  ∈  ℕ0  →  0  ≤  - 𝐴 ) | 
						
							| 22 | 20 21 | nsyl3 | ⊢ ( - 𝐴  ∈  ℕ0  →  ¬  𝐴  ∈  ℕ ) | 
						
							| 23 | 11 22 | jca2 | ⊢ ( 𝐴  ∈  ℂ  →  ( - 𝐴  ∈  ℕ0  →  ( 𝐴  ∈  ℤ  ∧  ¬  𝐴  ∈  ℕ ) ) ) | 
						
							| 24 | 5 23 | impbid2 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝐴  ∈  ℤ  ∧  ¬  𝐴  ∈  ℕ )  ↔  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 25 | 2 24 | bitrid | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ∈  ( ℤ  ∖  ℕ )  ↔  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 26 | 25 | notbid | ⊢ ( 𝐴  ∈  ℂ  →  ( ¬  𝐴  ∈  ( ℤ  ∖  ℕ )  ↔  ¬  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 27 | 26 | pm5.32i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  𝐴  ∈  ( ℤ  ∖  ℕ ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 28 | 1 27 | bitri | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  - 𝐴  ∈  ℕ0 ) ) |