Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ) ) |
2 |
|
eldif |
⊢ ( 𝐴 ∈ ( ℤ ∖ ℕ ) ↔ ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ ) ) |
3 |
|
elznn |
⊢ ( 𝐴 ∈ ℤ ↔ ( 𝐴 ∈ ℝ ∧ ( 𝐴 ∈ ℕ ∨ - 𝐴 ∈ ℕ0 ) ) ) |
4 |
3
|
simprbi |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ∈ ℕ ∨ - 𝐴 ∈ ℕ0 ) ) |
5 |
4
|
orcanai |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ ) → - 𝐴 ∈ ℕ0 ) |
6 |
|
negneg |
⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℕ0 ) → - - 𝐴 = 𝐴 ) |
8 |
|
nn0negz |
⊢ ( - 𝐴 ∈ ℕ0 → - - 𝐴 ∈ ℤ ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℕ0 ) → - - 𝐴 ∈ ℤ ) |
10 |
7 9
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
11 |
10
|
ex |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) ) |
12 |
|
nngt0 |
⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) |
13 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
14 |
13
|
lt0neg2d |
⊢ ( 𝐴 ∈ ℕ → ( 0 < 𝐴 ↔ - 𝐴 < 0 ) ) |
15 |
12 14
|
mpbid |
⊢ ( 𝐴 ∈ ℕ → - 𝐴 < 0 ) |
16 |
13
|
renegcld |
⊢ ( 𝐴 ∈ ℕ → - 𝐴 ∈ ℝ ) |
17 |
|
0re |
⊢ 0 ∈ ℝ |
18 |
|
ltnle |
⊢ ( ( - 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐴 < 0 ↔ ¬ 0 ≤ - 𝐴 ) ) |
19 |
16 17 18
|
sylancl |
⊢ ( 𝐴 ∈ ℕ → ( - 𝐴 < 0 ↔ ¬ 0 ≤ - 𝐴 ) ) |
20 |
15 19
|
mpbid |
⊢ ( 𝐴 ∈ ℕ → ¬ 0 ≤ - 𝐴 ) |
21 |
|
nn0ge0 |
⊢ ( - 𝐴 ∈ ℕ0 → 0 ≤ - 𝐴 ) |
22 |
20 21
|
nsyl3 |
⊢ ( - 𝐴 ∈ ℕ0 → ¬ 𝐴 ∈ ℕ ) |
23 |
11 22
|
jca2 |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ ) ) ) |
24 |
5 23
|
impbid2 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ ) ↔ - 𝐴 ∈ ℕ0 ) ) |
25 |
2 24
|
syl5bb |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ( ℤ ∖ ℕ ) ↔ - 𝐴 ∈ ℕ0 ) ) |
26 |
25
|
notbid |
⊢ ( 𝐴 ∈ ℂ → ( ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ↔ ¬ - 𝐴 ∈ ℕ0 ) ) |
27 |
26
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) ) |
28 |
1 27
|
bitri |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) ) |