Metamath Proof Explorer


Theorem eldmgm

Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014)

Ref Expression
Assertion eldmgm ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) )

Proof

Step Hyp Ref Expression
1 eldif ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ) )
2 eldif ( 𝐴 ∈ ( ℤ ∖ ℕ ) ↔ ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ ) )
3 elznn ( 𝐴 ∈ ℤ ↔ ( 𝐴 ∈ ℝ ∧ ( 𝐴 ∈ ℕ ∨ - 𝐴 ∈ ℕ0 ) ) )
4 3 simprbi ( 𝐴 ∈ ℤ → ( 𝐴 ∈ ℕ ∨ - 𝐴 ∈ ℕ0 ) )
5 4 orcanai ( ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ ) → - 𝐴 ∈ ℕ0 )
6 negneg ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 )
7 6 adantr ( ( 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℕ0 ) → - - 𝐴 = 𝐴 )
8 nn0negz ( - 𝐴 ∈ ℕ0 → - - 𝐴 ∈ ℤ )
9 8 adantl ( ( 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℕ0 ) → - - 𝐴 ∈ ℤ )
10 7 9 eqeltrrd ( ( 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℤ )
11 10 ex ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℕ0𝐴 ∈ ℤ ) )
12 nngt0 ( 𝐴 ∈ ℕ → 0 < 𝐴 )
13 nnre ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ )
14 13 lt0neg2d ( 𝐴 ∈ ℕ → ( 0 < 𝐴 ↔ - 𝐴 < 0 ) )
15 12 14 mpbid ( 𝐴 ∈ ℕ → - 𝐴 < 0 )
16 13 renegcld ( 𝐴 ∈ ℕ → - 𝐴 ∈ ℝ )
17 0re 0 ∈ ℝ
18 ltnle ( ( - 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐴 < 0 ↔ ¬ 0 ≤ - 𝐴 ) )
19 16 17 18 sylancl ( 𝐴 ∈ ℕ → ( - 𝐴 < 0 ↔ ¬ 0 ≤ - 𝐴 ) )
20 15 19 mpbid ( 𝐴 ∈ ℕ → ¬ 0 ≤ - 𝐴 )
21 nn0ge0 ( - 𝐴 ∈ ℕ0 → 0 ≤ - 𝐴 )
22 20 21 nsyl3 ( - 𝐴 ∈ ℕ0 → ¬ 𝐴 ∈ ℕ )
23 11 22 jca2 ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ ) ) )
24 5 23 impbid2 ( 𝐴 ∈ ℂ → ( ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ ) ↔ - 𝐴 ∈ ℕ0 ) )
25 2 24 syl5bb ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ( ℤ ∖ ℕ ) ↔ - 𝐴 ∈ ℕ0 ) )
26 25 notbid ( 𝐴 ∈ ℂ → ( ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ↔ ¬ - 𝐴 ∈ ℕ0 ) )
27 26 pm5.32i ( ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) )
28 1 27 bitri ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) )