Metamath Proof Explorer


Theorem dmgmaddn0

Description: If A is not a nonpositive integer, then A + N is nonzero for any nonnegative integer N . (Contributed by Mario Carneiro, 12-Jul-2014)

Ref Expression
Assertion dmgmaddn0 ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 + 𝑁 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 eldmgm ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) )
2 1 simprbi ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ¬ - 𝐴 ∈ ℕ0 )
3 2 adantr ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ¬ - 𝐴 ∈ ℕ0 )
4 df-neg - 𝐴 = ( 0 − 𝐴 )
5 4 eqeq1i ( - 𝐴 = 𝑁 ↔ ( 0 − 𝐴 ) = 𝑁 )
6 0cnd ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℂ )
7 eldifi ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → 𝐴 ∈ ℂ )
8 7 adantr ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ )
9 nn0cn ( 𝑁 ∈ ℕ0𝑁 ∈ ℂ )
10 9 adantl ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ )
11 6 8 10 subaddd ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 − 𝐴 ) = 𝑁 ↔ ( 𝐴 + 𝑁 ) = 0 ) )
12 5 11 syl5bb ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( - 𝐴 = 𝑁 ↔ ( 𝐴 + 𝑁 ) = 0 ) )
13 simpr ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 )
14 eleq1 ( - 𝐴 = 𝑁 → ( - 𝐴 ∈ ℕ0𝑁 ∈ ℕ0 ) )
15 13 14 syl5ibrcom ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( - 𝐴 = 𝑁 → - 𝐴 ∈ ℕ0 ) )
16 12 15 sylbird ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 + 𝑁 ) = 0 → - 𝐴 ∈ ℕ0 ) )
17 16 necon3bd ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ¬ - 𝐴 ∈ ℕ0 → ( 𝐴 + 𝑁 ) ≠ 0 ) )
18 3 17 mpd ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 + 𝑁 ) ≠ 0 )