| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldmgm | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 2 | 1 | simprbi | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  ¬  - 𝐴  ∈  ℕ0 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  ¬  - 𝐴  ∈  ℕ0 ) | 
						
							| 4 |  | df-neg | ⊢ - 𝐴  =  ( 0  −  𝐴 ) | 
						
							| 5 | 4 | eqeq1i | ⊢ ( - 𝐴  =  𝑁  ↔  ( 0  −  𝐴 )  =  𝑁 ) | 
						
							| 6 |  | 0cnd | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  0  ∈  ℂ ) | 
						
							| 7 |  | eldifi | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  →  𝐴  ∈  ℂ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 9 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 11 | 6 8 10 | subaddd | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 0  −  𝐴 )  =  𝑁  ↔  ( 𝐴  +  𝑁 )  =  0 ) ) | 
						
							| 12 | 5 11 | bitrid | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  ( - 𝐴  =  𝑁  ↔  ( 𝐴  +  𝑁 )  =  0 ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 14 |  | eleq1 | ⊢ ( - 𝐴  =  𝑁  →  ( - 𝐴  ∈  ℕ0  ↔  𝑁  ∈  ℕ0 ) ) | 
						
							| 15 | 13 14 | syl5ibrcom | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  ( - 𝐴  =  𝑁  →  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 16 | 12 15 | sylbird | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  +  𝑁 )  =  0  →  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 17 | 16 | necon3bd | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  ( ¬  - 𝐴  ∈  ℕ0  →  ( 𝐴  +  𝑁 )  ≠  0 ) ) | 
						
							| 18 | 3 17 | mpd | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  +  𝑁 )  ≠  0 ) |