Step |
Hyp |
Ref |
Expression |
1 |
|
eldmgm |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) ) |
2 |
1
|
simprbi |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → ¬ - 𝐴 ∈ ℕ0 ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ¬ - 𝐴 ∈ ℕ0 ) |
4 |
|
df-neg |
⊢ - 𝐴 = ( 0 − 𝐴 ) |
5 |
4
|
eqeq1i |
⊢ ( - 𝐴 = 𝑁 ↔ ( 0 − 𝐴 ) = 𝑁 ) |
6 |
|
0cnd |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℂ ) |
7 |
|
eldifi |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) → 𝐴 ∈ ℂ ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
9 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
11 |
6 8 10
|
subaddd |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 − 𝐴 ) = 𝑁 ↔ ( 𝐴 + 𝑁 ) = 0 ) ) |
12 |
5 11
|
syl5bb |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( - 𝐴 = 𝑁 ↔ ( 𝐴 + 𝑁 ) = 0 ) ) |
13 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
14 |
|
eleq1 |
⊢ ( - 𝐴 = 𝑁 → ( - 𝐴 ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) |
15 |
13 14
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( - 𝐴 = 𝑁 → - 𝐴 ∈ ℕ0 ) ) |
16 |
12 15
|
sylbird |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 + 𝑁 ) = 0 → - 𝐴 ∈ ℕ0 ) ) |
17 |
16
|
necon3bd |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ¬ - 𝐴 ∈ ℕ0 → ( 𝐴 + 𝑁 ) ≠ 0 ) ) |
18 |
3 17
|
mpd |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 + 𝑁 ) ≠ 0 ) |