| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  - 𝐴  ∈  ℕ0 ) | 
						
							| 3 | 2 | nn0ge0d | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  0  ≤  - 𝐴 ) | 
						
							| 4 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 5 | 2 | nn0red | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  - 𝐴  ∈  ℝ ) | 
						
							| 6 | 4 5 | negrebd | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  𝐴  ∈  ℝ ) | 
						
							| 7 |  | eqid | ⊢ ( ℂ  ∖  ( -∞ (,] 0 ) )  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 8 | 7 | ellogdm | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ+ ) ) ) | 
						
							| 9 | 8 | simprbi | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ+ ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℝ+ ) | 
						
							| 11 | 6 10 | syldan | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 12 | 11 | rpgt0d | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  0  <  𝐴 ) | 
						
							| 13 | 6 | lt0neg2d | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  ( 0  <  𝐴  ↔  - 𝐴  <  0 ) ) | 
						
							| 14 | 12 13 | mpbid | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  - 𝐴  <  0 ) | 
						
							| 15 |  | 0red | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  0  ∈  ℝ ) | 
						
							| 16 | 5 15 | ltnled | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  ( - 𝐴  <  0  ↔  ¬  0  ≤  - 𝐴 ) ) | 
						
							| 17 | 14 16 | mpbid | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ∧  - 𝐴  ∈  ℕ0 )  →  ¬  0  ≤  - 𝐴 ) | 
						
							| 18 | 3 17 | pm2.65da | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ¬  - 𝐴  ∈  ℕ0 ) | 
						
							| 19 |  | eldmgm | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ¬  - 𝐴  ∈  ℕ0 ) ) | 
						
							| 20 | 1 18 19 | sylanbrc | ⊢ ( 𝐴  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  𝐴  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) ) |