Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝐴 ∈ ℂ ) |
2 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → - 𝐴 ∈ ℕ0 ) |
3 |
2
|
nn0ge0d |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → 0 ≤ - 𝐴 ) |
4 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
5 |
2
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → - 𝐴 ∈ ℝ ) |
6 |
4 5
|
negrebd |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
7 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
8 |
7
|
ellogdm |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
9 |
8
|
simprbi |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
10 |
9
|
imp |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ+ ) |
11 |
6 10
|
syldan |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℝ+ ) |
12 |
11
|
rpgt0d |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → 0 < 𝐴 ) |
13 |
6
|
lt0neg2d |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → ( 0 < 𝐴 ↔ - 𝐴 < 0 ) ) |
14 |
12 13
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → - 𝐴 < 0 ) |
15 |
|
0red |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → 0 ∈ ℝ ) |
16 |
5 15
|
ltnled |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → ( - 𝐴 < 0 ↔ ¬ 0 ≤ - 𝐴 ) ) |
17 |
14 16
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ∧ - 𝐴 ∈ ℕ0 ) → ¬ 0 ≤ - 𝐴 ) |
18 |
3 17
|
pm2.65da |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ¬ - 𝐴 ∈ ℕ0 ) |
19 |
|
eldmgm |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ - 𝐴 ∈ ℕ0 ) ) |
20 |
1 18 19
|
sylanbrc |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |