Description: A positive real number is in the domain of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | rpdmgm | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
2 | ax-1 | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) | |
3 | eqid | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
4 | 3 | ellogdm | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
5 | 1 2 4 | sylanbrc | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
6 | dmlogdmgm | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) | |
7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ) |