Metamath Proof Explorer


Theorem rpdmgm

Description: A positive real number is in the domain of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion rpdmgm ( 𝐴 ∈ ℝ+𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )

Proof

Step Hyp Ref Expression
1 rpcn ( 𝐴 ∈ ℝ+𝐴 ∈ ℂ )
2 ax-1 ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) )
3 eqid ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) )
4 3 ellogdm ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) )
5 1 2 4 sylanbrc ( 𝐴 ∈ ℝ+𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) )
6 dmlogdmgm ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )
7 5 6 syl ( 𝐴 ∈ ℝ+𝐴 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) )