Description: A positive real number is in the domain of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpdmgm | |- ( A e. RR+ -> A e. ( CC \ ( ZZ \ NN ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rpcn | |- ( A e. RR+ -> A e. CC ) | |
| 2 | ax-1 | |- ( A e. RR+ -> ( A e. RR -> A e. RR+ ) ) | |
| 3 | eqid | |- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) | |
| 4 | 3 | ellogdm | |- ( A e. ( CC \ ( -oo (,] 0 ) ) <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) ) | 
| 5 | 1 2 4 | sylanbrc | |- ( A e. RR+ -> A e. ( CC \ ( -oo (,] 0 ) ) ) | 
| 6 | dmlogdmgm | |- ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) | |
| 7 | 5 6 | syl | |- ( A e. RR+ -> A e. ( CC \ ( ZZ \ NN ) ) ) |