Metamath Proof Explorer


Theorem rpdmgm

Description: A positive real number is in the domain of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Assertion rpdmgm
|- ( A e. RR+ -> A e. ( CC \ ( ZZ \ NN ) ) )

Proof

Step Hyp Ref Expression
1 rpcn
 |-  ( A e. RR+ -> A e. CC )
2 ax-1
 |-  ( A e. RR+ -> ( A e. RR -> A e. RR+ ) )
3 eqid
 |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) )
4 3 ellogdm
 |-  ( A e. ( CC \ ( -oo (,] 0 ) ) <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) )
5 1 2 4 sylanbrc
 |-  ( A e. RR+ -> A e. ( CC \ ( -oo (,] 0 ) ) )
6 dmlogdmgm
 |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. ( CC \ ( ZZ \ NN ) ) )
7 5 6 syl
 |-  ( A e. RR+ -> A e. ( CC \ ( ZZ \ NN ) ) )