Metamath Proof Explorer


Theorem dmlogdmgm

Description: If A is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Assertion dmlogdmgm
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. ( CC \ ( ZZ \ NN ) ) )

Proof

Step Hyp Ref Expression
1 eldifi
 |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. CC )
2 simpr
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -u A e. NN0 )
3 2 nn0ge0d
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> 0 <_ -u A )
4 1 adantr
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> A e. CC )
5 2 nn0red
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -u A e. RR )
6 4 5 negrebd
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> A e. RR )
7 eqid
 |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) )
8 7 ellogdm
 |-  ( A e. ( CC \ ( -oo (,] 0 ) ) <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) )
9 8 simprbi
 |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( A e. RR -> A e. RR+ ) )
10 9 imp
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ A e. RR ) -> A e. RR+ )
11 6 10 syldan
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> A e. RR+ )
12 11 rpgt0d
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> 0 < A )
13 6 lt0neg2d
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> ( 0 < A <-> -u A < 0 ) )
14 12 13 mpbid
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -u A < 0 )
15 0red
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> 0 e. RR )
16 5 15 ltnled
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> ( -u A < 0 <-> -. 0 <_ -u A ) )
17 14 16 mpbid
 |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -. 0 <_ -u A )
18 3 17 pm2.65da
 |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> -. -u A e. NN0 )
19 eldmgm
 |-  ( A e. ( CC \ ( ZZ \ NN ) ) <-> ( A e. CC /\ -. -u A e. NN0 ) )
20 1 18 19 sylanbrc
 |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. ( CC \ ( ZZ \ NN ) ) )