Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. CC ) |
2 |
|
simpr |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -u A e. NN0 ) |
3 |
2
|
nn0ge0d |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> 0 <_ -u A ) |
4 |
1
|
adantr |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> A e. CC ) |
5 |
2
|
nn0red |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -u A e. RR ) |
6 |
4 5
|
negrebd |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> A e. RR ) |
7 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
8 |
7
|
ellogdm |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) ) |
9 |
8
|
simprbi |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( A e. RR -> A e. RR+ ) ) |
10 |
9
|
imp |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ A e. RR ) -> A e. RR+ ) |
11 |
6 10
|
syldan |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> A e. RR+ ) |
12 |
11
|
rpgt0d |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> 0 < A ) |
13 |
6
|
lt0neg2d |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> ( 0 < A <-> -u A < 0 ) ) |
14 |
12 13
|
mpbid |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -u A < 0 ) |
15 |
|
0red |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> 0 e. RR ) |
16 |
5 15
|
ltnled |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> ( -u A < 0 <-> -. 0 <_ -u A ) ) |
17 |
14 16
|
mpbid |
|- ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -. 0 <_ -u A ) |
18 |
3 17
|
pm2.65da |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> -. -u A e. NN0 ) |
19 |
|
eldmgm |
|- ( A e. ( CC \ ( ZZ \ NN ) ) <-> ( A e. CC /\ -. -u A e. NN0 ) ) |
20 |
1 18 19
|
sylanbrc |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |