| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. CC ) | 
						
							| 2 |  | simpr |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -u A e. NN0 ) | 
						
							| 3 | 2 | nn0ge0d |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> 0 <_ -u A ) | 
						
							| 4 | 1 | adantr |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> A e. CC ) | 
						
							| 5 | 2 | nn0red |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -u A e. RR ) | 
						
							| 6 | 4 5 | negrebd |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> A e. RR ) | 
						
							| 7 |  | eqid |  |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 8 | 7 | ellogdm |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) ) | 
						
							| 9 | 8 | simprbi |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> ( A e. RR -> A e. RR+ ) ) | 
						
							| 10 | 9 | imp |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ A e. RR ) -> A e. RR+ ) | 
						
							| 11 | 6 10 | syldan |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> A e. RR+ ) | 
						
							| 12 | 11 | rpgt0d |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> 0 < A ) | 
						
							| 13 | 6 | lt0neg2d |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> ( 0 < A <-> -u A < 0 ) ) | 
						
							| 14 | 12 13 | mpbid |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -u A < 0 ) | 
						
							| 15 |  | 0red |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> 0 e. RR ) | 
						
							| 16 | 5 15 | ltnled |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> ( -u A < 0 <-> -. 0 <_ -u A ) ) | 
						
							| 17 | 14 16 | mpbid |  |-  ( ( A e. ( CC \ ( -oo (,] 0 ) ) /\ -u A e. NN0 ) -> -. 0 <_ -u A ) | 
						
							| 18 | 3 17 | pm2.65da |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> -. -u A e. NN0 ) | 
						
							| 19 |  | eldmgm |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) <-> ( A e. CC /\ -. -u A e. NN0 ) ) | 
						
							| 20 | 1 18 19 | sylanbrc |  |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> A e. ( CC \ ( ZZ \ NN ) ) ) |