| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) <-> ( A e. CC /\ -. A e. ( ZZ \ NN ) ) ) | 
						
							| 2 |  | eldif |  |-  ( A e. ( ZZ \ NN ) <-> ( A e. ZZ /\ -. A e. NN ) ) | 
						
							| 3 |  | elznn |  |-  ( A e. ZZ <-> ( A e. RR /\ ( A e. NN \/ -u A e. NN0 ) ) ) | 
						
							| 4 | 3 | simprbi |  |-  ( A e. ZZ -> ( A e. NN \/ -u A e. NN0 ) ) | 
						
							| 5 | 4 | orcanai |  |-  ( ( A e. ZZ /\ -. A e. NN ) -> -u A e. NN0 ) | 
						
							| 6 |  | negneg |  |-  ( A e. CC -> -u -u A = A ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. CC /\ -u A e. NN0 ) -> -u -u A = A ) | 
						
							| 8 |  | nn0negz |  |-  ( -u A e. NN0 -> -u -u A e. ZZ ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. CC /\ -u A e. NN0 ) -> -u -u A e. ZZ ) | 
						
							| 10 | 7 9 | eqeltrrd |  |-  ( ( A e. CC /\ -u A e. NN0 ) -> A e. ZZ ) | 
						
							| 11 | 10 | ex |  |-  ( A e. CC -> ( -u A e. NN0 -> A e. ZZ ) ) | 
						
							| 12 |  | nngt0 |  |-  ( A e. NN -> 0 < A ) | 
						
							| 13 |  | nnre |  |-  ( A e. NN -> A e. RR ) | 
						
							| 14 | 13 | lt0neg2d |  |-  ( A e. NN -> ( 0 < A <-> -u A < 0 ) ) | 
						
							| 15 | 12 14 | mpbid |  |-  ( A e. NN -> -u A < 0 ) | 
						
							| 16 | 13 | renegcld |  |-  ( A e. NN -> -u A e. RR ) | 
						
							| 17 |  | 0re |  |-  0 e. RR | 
						
							| 18 |  | ltnle |  |-  ( ( -u A e. RR /\ 0 e. RR ) -> ( -u A < 0 <-> -. 0 <_ -u A ) ) | 
						
							| 19 | 16 17 18 | sylancl |  |-  ( A e. NN -> ( -u A < 0 <-> -. 0 <_ -u A ) ) | 
						
							| 20 | 15 19 | mpbid |  |-  ( A e. NN -> -. 0 <_ -u A ) | 
						
							| 21 |  | nn0ge0 |  |-  ( -u A e. NN0 -> 0 <_ -u A ) | 
						
							| 22 | 20 21 | nsyl3 |  |-  ( -u A e. NN0 -> -. A e. NN ) | 
						
							| 23 | 11 22 | jca2 |  |-  ( A e. CC -> ( -u A e. NN0 -> ( A e. ZZ /\ -. A e. NN ) ) ) | 
						
							| 24 | 5 23 | impbid2 |  |-  ( A e. CC -> ( ( A e. ZZ /\ -. A e. NN ) <-> -u A e. NN0 ) ) | 
						
							| 25 | 2 24 | bitrid |  |-  ( A e. CC -> ( A e. ( ZZ \ NN ) <-> -u A e. NN0 ) ) | 
						
							| 26 | 25 | notbid |  |-  ( A e. CC -> ( -. A e. ( ZZ \ NN ) <-> -. -u A e. NN0 ) ) | 
						
							| 27 | 26 | pm5.32i |  |-  ( ( A e. CC /\ -. A e. ( ZZ \ NN ) ) <-> ( A e. CC /\ -. -u A e. NN0 ) ) | 
						
							| 28 | 1 27 | bitri |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) <-> ( A e. CC /\ -. -u A e. NN0 ) ) |