| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldmgm |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) <-> ( A e. CC /\ -. -u A e. NN0 ) ) | 
						
							| 2 | 1 | simprbi |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> -. -u A e. NN0 ) | 
						
							| 3 | 2 | adantr |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> -. -u A e. NN0 ) | 
						
							| 4 |  | df-neg |  |-  -u A = ( 0 - A ) | 
						
							| 5 | 4 | eqeq1i |  |-  ( -u A = N <-> ( 0 - A ) = N ) | 
						
							| 6 |  | 0cnd |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> 0 e. CC ) | 
						
							| 7 |  | eldifi |  |-  ( A e. ( CC \ ( ZZ \ NN ) ) -> A e. CC ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> A e. CC ) | 
						
							| 9 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> N e. CC ) | 
						
							| 11 | 6 8 10 | subaddd |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> ( ( 0 - A ) = N <-> ( A + N ) = 0 ) ) | 
						
							| 12 | 5 11 | bitrid |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> ( -u A = N <-> ( A + N ) = 0 ) ) | 
						
							| 13 |  | simpr |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 14 |  | eleq1 |  |-  ( -u A = N -> ( -u A e. NN0 <-> N e. NN0 ) ) | 
						
							| 15 | 13 14 | syl5ibrcom |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> ( -u A = N -> -u A e. NN0 ) ) | 
						
							| 16 | 12 15 | sylbird |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> ( ( A + N ) = 0 -> -u A e. NN0 ) ) | 
						
							| 17 | 16 | necon3bd |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> ( -. -u A e. NN0 -> ( A + N ) =/= 0 ) ) | 
						
							| 18 | 3 17 | mpd |  |-  ( ( A e. ( CC \ ( ZZ \ NN ) ) /\ N e. NN0 ) -> ( A + N ) =/= 0 ) |