Metamath Proof Explorer


Theorem eldmgm

Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014)

Ref Expression
Assertion eldmgm A A ¬ A 0

Proof

Step Hyp Ref Expression
1 eldif A A ¬ A
2 eldif A A ¬ A
3 elznn A A A A 0
4 3 simprbi A A A 0
5 4 orcanai A ¬ A A 0
6 negneg A A = A
7 6 adantr A A 0 A = A
8 nn0negz A 0 A
9 8 adantl A A 0 A
10 7 9 eqeltrrd A A 0 A
11 10 ex A A 0 A
12 nngt0 A 0 < A
13 nnre A A
14 13 lt0neg2d A 0 < A A < 0
15 12 14 mpbid A A < 0
16 13 renegcld A A
17 0re 0
18 ltnle A 0 A < 0 ¬ 0 A
19 16 17 18 sylancl A A < 0 ¬ 0 A
20 15 19 mpbid A ¬ 0 A
21 nn0ge0 A 0 0 A
22 20 21 nsyl3 A 0 ¬ A
23 11 22 jca2 A A 0 A ¬ A
24 5 23 impbid2 A A ¬ A A 0
25 2 24 syl5bb A A A 0
26 25 notbid A ¬ A ¬ A 0
27 26 pm5.32i A ¬ A A ¬ A 0
28 1 27 bitri A A ¬ A 0