Metamath Proof Explorer


Theorem dmlogdmgm

Description: If A is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Assertion dmlogdmgm A −∞ 0 A

Proof

Step Hyp Ref Expression
1 eldifi A −∞ 0 A
2 simpr A −∞ 0 A 0 A 0
3 2 nn0ge0d A −∞ 0 A 0 0 A
4 1 adantr A −∞ 0 A 0 A
5 2 nn0red A −∞ 0 A 0 A
6 4 5 negrebd A −∞ 0 A 0 A
7 eqid −∞ 0 = −∞ 0
8 7 ellogdm A −∞ 0 A A A +
9 8 simprbi A −∞ 0 A A +
10 9 imp A −∞ 0 A A +
11 6 10 syldan A −∞ 0 A 0 A +
12 11 rpgt0d A −∞ 0 A 0 0 < A
13 6 lt0neg2d A −∞ 0 A 0 0 < A A < 0
14 12 13 mpbid A −∞ 0 A 0 A < 0
15 0red A −∞ 0 A 0 0
16 5 15 ltnled A −∞ 0 A 0 A < 0 ¬ 0 A
17 14 16 mpbid A −∞ 0 A 0 ¬ 0 A
18 3 17 pm2.65da A −∞ 0 ¬ A 0
19 eldmgm A A ¬ A 0
20 1 18 19 sylanbrc A −∞ 0 A