Metamath Proof Explorer


Theorem negrebd

Description: The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
negrebd.2 φ A
Assertion negrebd φ A

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 negrebd.2 φ A
3 negreb A A A
4 1 3 syl φ A A
5 2 4 mpbid φ A